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Abstract. This paper considers some initial boundary value problems for the heat equation in a bounded
segment with a piecewise constant coefficient. Using the method of separation of variables, the problem
under consideration is reduced to a spectral problem and eigenvalues and eigenfunctions of the resulting
spectral problem are found. It is shown that the system of eigenfunctions forms a Riesz basis. Next,
we prove a theorem on the existence and uniqueness of solutions to the initial-boundary value problems

under consideration.

Keywords. Heat equation, discontinuous coefficients, eigenvalues, eigenfunctions, method of separation

of variables.

Introduction

Heat conduction problems with discontinuous coefficients have been well studied for a
long time. It should be noted the works [1-5], which are closest in theme to our work. In the
work of A.A. Samarsky [1] using the methods of Green’s function and heat potentials, the
correctness of the first initial-boundary value problem for the heat equation with a discontin-
uous coefficient was proved. And in the work of Kazakhstan mathematicians E.I. Kim and
B.B. Baimukhanov [2] by the method of potentials, by reducing to an integral equation, the
correctness of the first initial-boundary value problem for a two-dimensional heat equation
with a discontinuous heat conductivity coefficient in a half-space was proved. In [3-5], using
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heat potentials, the existence of classical solutions to various boundary value problems for
parabolic equations was proved.

In the case without discontinuity, the spectral theory of these problems is almost com-
pletely constructed. Here we can mention the works [6-16].

In this work, the solution to some initial boundary value problems for the heat equation
with a piecewise constant coefficient is justified by the method of separation of variables and
the existence and uniqueness theorem of the solution is proved.

1 Formulation of the problem

We consider an initial boundary value problem for the following heat equation with a piecewise
constant coefficient

= ut_k;%uitafa O<x<x0 -
o= { ut_k%“zm, To < x <l —f(l',t), (1)

in the domain Q = {(z,t) : 0 <z <, 0 <t < T}, with the initial condition

u(z,0) =p(x), 0<z<l, (2)

with conjugation conditions
u(zg — 0,t) = u(zo + 0, 1), 0<t<T, (3)
kiug(zo — 0,t) = kaug(xo +0,t), 0<t<T, (4)

and with one of the following boundary conditions of the form

u(0,t) = u(l,t) =0, 0<t<T, (5)
uw(0,t) = uy(l,t) =0, 0<t<T, (6)
uz(0,t) = u(l,t) =0, 0<t<T, (7)
uz(0,t) = ug(l,t) =0, 0<t<T. (8)

The point x( is a strictly internal point of interval 0 < x¢ < [. The coeflicients k; > 0,
where ¢ =1, 2.

Problem (1)-(8) models the process of temperature field propagation in a thin rod of
length [, consisting of two sections: 0 < z < zg and zg < x < [ with different thermophysical
characteristics.

The function f(z,t) is continuous, ¢(z) is a twice continuously differentiable function
that satisfies Boundary conditions (5)—(8) and Conjugation conditions (3)—(4).
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2 Solution method

First, we consider Problem (1)—(5). The solution to Problem (1)—(5) is sought in the form
u(z,t) = Y(x) - T(t) # 0. Substituting into Equation (1) (for f(z,t) = 0) and Conditions
(3)-(5), and separating the variables, we obtain the following spectral problem

—E2Y"(z <
LY (z) = { —Z%i”&%: 20<< w<< l0 } =AY (@), )
Y(0)=Y(1)=0 (10)
Y(x() — 0) = Y(JJO + 0), le’(xo - 0) = kQY/(:L'o + O) (11)

The function T'(¢) is a solution to the equation 7"(t) + AT'(t) = 0.
The general solution to Equation (9) has the form

{ Y(xz) =cicospiz + cosinpgz, 0<x < o, (12)

Y(x) = dj cos pgx + dasin pgz, x9 < x <1,

where p; = ‘,ﬁ—}, fori=1, 2.
Substituting the general solution (12) into Boundary conditions (10) and Conjugation
conditions (11), and taking into account that pui1k; = ugks = VA, we obtain

C1 = 0,

dy cos(pal) + dg sin(usl) = 0,

1 cos(p1zo) + cosin(pixo) — dy cos(uazo) — do sin(pezo) = 0,
—cy sin(p1z9) + c2 cos(p1zo) + di sin(pexg) — do cos(uexg) = 0.

After cumbersome but simple calculations, we find the characteristic determinant of the

system:
A
A(X) = sin <\F> =0, (13)
T
where ok
1R2
= ) 14
" koo + ka(l— ao) 19
From Equation (13) one can find eigenvalues and eigenfunctions.
So, A\n = (7nr)2, where n =1, 2, ...
sin | THL ) 0 <z <z,
Yo(z) =C ( h ) (15)

(—1)"*1sin (%i_m)) ., xo<z<l,

where r is determined by Formula (14).
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Lemma 1. Spectral problem (9)-(11) is non-self-adjoint.
Proof. We find an adjoint problem to Problem (9)—(11). Given the following formula

Y'(@)Z(x) = (Y'(@)Z(x) - Y(2)2'(2)) + 2" (2)Y (2),

we obtain

l ) l
/0 Z(x)LY (z)dx = — /0 Z(2)EY" (z)dx — /x 0 Z(x)k3Y" (z)dx =

= —k2Z(xg — 0)Y'(x0 — 0) + k2 Z(0)Y'(0) + k2 Z' (29 — 0)Y (g — 0)+
+k2Z'0)Y(0) = k2Z(1)Y' (1) + k2 Z (20 + 0)Y (20 + 0) + k3 Z'(1)Y (1) —

— k37 (x0 + 0)Y (0 4+ 0) + /l Y (z)LZ(z)dx.
0

Using Boundary conditions (10) and Conjugation conditions (11), we obtain an adjoint
problem. So, the adjoint problem has the following form:

[ —k2Z"=), O<z<z | _
LZ(x) = { —k3Z"(z), wmo<axz<l [ AZ(x),

Z(0) =0,
Z(l) =0,
k1Z(z0 — 0) = ko Z(x0 +0), k3Z'(xg —0) = k3Z'(x0 +0).

Thus, we have shown that problem (9)—(11) is not self-adjoint.

Lemma 2. The next spectral problem is self-adjoint.

 —ER"(2), O<z<z0 | _
Do) = { T 0SS L = dula) (16)
v(0) =v(l) =0, (17)

1 1 3 3
kZv(xzg —0) = kZv(zo +0), kv (zg—0) = k30 (zg + 0). (18)

Proof. We find an adjoint problem

A%@mezif%@ﬁw@ﬂ—fww%wmmz

= —kIw(xg — 0)v'(xg — 0) + kIw(0)v'(0) + kiw' (20 — 0)v(2z0 — 0)—
— k' (0)v(0) — k3w (I)v' (1) 4+ k3w(zo + 0)v'(zo + 0) + k3w’ (1)v(l)—

l
— k3w (w0 + 0)v(zo + 0) + /0 v(x)Lw(z)dzx.
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Using Boundary conditions (17) and Conjugation conditions (18), we obtain

1

fé w(z)Lv(z)dx = —/@Q%U’(xo +0) (kléw(xo —0) — k2

—k3v' (Dw(l) + k

w(zo + 0)> + k20" (0)w(0)—

3
v(zg — 0) <kfw’(x0 —0) — kfw zo+0) > —I—fO x)dx.

ol

So, an adjoint problem has the form:

[ k'), O<z<z |
Lo(z) = { /{2 "z), z0<z <l = Aw(z),

1

w(0) = w(l) =
1 1 3 3
kiw(zo—0) = kZw(zg +0), k2w (zo—0)=kIw'(xo+0).
Thus, we have shown that Problem (16)—(18) is self-adjoint.

Now we find eigenvalues and eigenfunctions of Problem (16)—(18).

It can be shown that the eigenvalues of Problems (16)—(18) and (9)—(11) coincide, and
the eigenfunctions differ by a piecewise constant factor. That is, A, = (7nr)?, where n = 1,
2 ...

1 : TNTrT

ﬁ&n(,ﬂ), 0 <2 <z,

(7\1/)’;;1 sin (Wm]gi*z)) , wmo<ax<l.

vp(x) =C

This shows that the eigenfunctions of problem (9)—(11) and (16)—(18) are related by the
following equality:

, 0<ax <,

vn(x) = a(z)Yyn(x), where a(x) = { Cmp<z<l.

s
) =

Main result

Since v, (x) are the eigenfunctions of a self-adjoint problem, the system {v,(x)} of eigen-
functions forms a Riesz basis in Lo(0,1) (orthogonal basis, if normalized, then orthonormal

basis). If we choose C' equal to v/2r, then the system of eigenfunctions {v,(z)} forms an
orthonormal basis.

) L gin (mm>, 0 < < o,
v (z) = V2r Eﬁ\l/)g sin (wnTIEIQ—:E)> . o<z <l
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So, vp(x) = AY,(z), where AY (z) = a(x)Y (z), A : L2(0,1) — L2(0,1) is a bounded
operator and there exists A™', which is also bounded. This implies that the system of
eigenfunctions {Y},(z)} also forms a Riesz basis.

Further, if we consider Problem (1)—(4) with Boundary conditions (6), (7) and (8), then,
respectively, the eigenvalues and eigenfunctions have the form:

2
An:(@) , where n =0, 1, 2, ...

. w(2n+1)rx
SN | ————
Yo(x)=C ( oM

), 0<z <z,
(—1)"cos (%{:(l_@), xo < x <l,

2
)‘”:(M> , where n =20, 1, 2, ...
COS(W), 0<z <z,

Yo(z) =
(=1)"sin (%W) , ko < x <,

An = (mnr)?, where n =0, 1, 2, ...

cos <“ZI“”>, 0 <z < xg,

Yo(z)=C
(@) (—1)"008(%2710)), xo <z <l

We use the following notation for individual parts of the domain €:
Qo={(z,t): 0 <z<z0, 0<t<T}, Y={(z,t): zo<a<l, 0<t<T}.
We denote by W the linear manifold of functions from the class
u(z,t) € C (Q) N O (@) N O (@)

that satisfy all Conditions (1)—(5).
A function u(z,t) from the class u(x,t) € W is called a classical solution to Problem
(1)—(5), if it satisfies Equation (1) and all Conditions (2)—(5) in the usual, continuous sense.
The following theorem holds.

Theorem 1. For any function ¢ (x) € C[0,1] N C?[0,z¢] N C?[z0,!] and for any function
f(z,t)eC (ﬁ) NnCc21 ((To) nCc2t (ﬁl), satisfying Boundary conditions (5) and Conjugation
conditions (3)—(4), there is a unique classical solution u (x,t) € C (ﬁ) NnC?1 (QT)) NnC?1 (ﬁl)
to Problem (1)-(5).

Proof. First, we construct a formal solution to Problem (1)—(5) using the method of separation
of variables, in the form of a series of eigenfunctions.
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Application of the method of separation of variables to the solution of the heat equation
with a piecewise constant coefficient leads to a spectral problem for an ordinary differential
equation with the discontinuous coefficient (9)—(11).

We have proven that the system of eigenfunctions of Problem (6)—(8) forms the Riesz
basis in L2(0,l). Then, we write the solution to Problem (1)—(5) in the form:

u(x,t) = Vo(z)Tu(t), (19)
n=1

where Y, (z) is determined by Formula (15). The right sides of Equation (1) and Initial
condition (2) are also expanded into series:

f(x7t) = ZYn(x)fn(t)a (20)

n=1

p@) =3 puYale), (21)
n=1

where ¢, = fol o(x)Y,(x)dx.
Suppose that ¢, = £*, and the number series ) 7, |@n|?
function

converges. We estimate the

fn(t) = sup sup |fn(t)| = sup sup <
neN 0<t<T neN 0<t<T
!
< sup C [ |f(z,t)|dx < Cl sup |f(z,t)] <C) < 0.
0<t<T 0 (z,t)eQ

l
/ f(z, )Y, (x)dz
0

Substituting Series (19), (20) and (22) into Problem (1)—(5), we obtain

D Ya(@)Th(t) + D> AaYa(@)Tu(t) = Y Ya(@) fult), 0<z<l,
n=1 n=1 n=1

D Ya(@)Th(0) =D Ya(z)pn, 0<a <,
n=1 n=1

(we will discuss the possibility of term-by-term differentiation of a series later).
We require that the equalities written above be fulfilled term by term:

T’r/z(t) + AnTn(t) = fn(t)y

T,.(0) = @p.
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The solution to the Cauchy problem for a first-order inhomogeneous differential equation
has the form:

t
T.(t) = gpne_A"t +/ fn(T)e_A”(t_T)dT.
0

Thus, we have formally constructed a series

t)zgyn(x)Tn( 521(90 et /fn e~ (- T)d7> (z). (22)

We prove the existence of a solution to Problem (1)-(5). We show that Series (22)
converges uniformly, for this we estimate the n-th term as follows:

sup Yo ()T, ()| < C sup |T,(t)| =
(2,)€Q 0<t<T
l
=C sup /fn(T)eA”(tT)dT
0<t<T |Jo

l
< C sup |fu(t)| sup /e_/\"(t_T)dT+C|g0n\ <
0<t<T o<t<T Jo

—Ant

+ C |one <

1 C. C
< C-C; sup —(1—6_’\“)+C’¢n| < 224 3|30l s 3
0<t<T An n An

Since the majorizing series » <|g5n|2 + n%) converges, Series (22) converges uniformly

on (2 to some function u(z,t).
Now we show the possibility of term-by-term differentiation of Series (22). To do this, it
is sufficient to show the uniform convergence of the series

S V@) T, S Vi@ Tut), S Y (@)Tu(t).
n=1 n=1 n=1

This provides the possibility of termwise differentiation, and since Y, (x)T,(t) € C’ztl (Q) for
any n € N, we obtain u(z,t) € Citl(Q) We find

[
:/ﬂ@wmwm
0

sup sup }ff]( < sup C/ |ft x t)‘deCl sup |ft'(:c,t)} <Oy < .
neN 0<t<T 0<t<T (2,6)€0

and
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We choose and fix an arbitrary small 5 > 0. We estimate the n-th term of the series

oo
D Yal(@)T,(t) sup to <t < T |Yu(x)Ty(t)]| < C sup |Th(t)| =
0<z<l to<t<T

=C sup

—Anpne 4 £ (0)e A 4 /f e MtTgr| <
to<t<T

l
< Clpn| Ape™ 0 4 Cre™ 0 4 Oy sup / e Mnt=T)gr <
to<t<T JO

C:
<C ’9071’ )‘nei)\nto + Clei)\nto + )\72
n

At the same time, we have taken into account that
T (t) = =Apone M + fu(t) / fu(r)e 2T dr =
= Apne M (0)e M 4 / £ (P)e= =gy
Thus, the series Y 2 ¥, (2)T}(t) is majorized by a numerical convergent series, therefore

the series > > | Y, (x)T,,(t) converges uniformly on the set (0 <z <1, to <t <T), to > 0.
Due to its arbitrariness of ty, this means the existence of

ZY ) e ().

Now we consider the following series in order to estimate its n-th term:

[e.e]
2V (@) Ta(t)
n=1
Using the equality Y, (z) = A\, Y, (), we obtain |Y,)(z)| = [\nYn(z)| < CAy,. Then

<

sup |Y,) ()T (t)| < CA [Tn(t)| = C

0<z<lI

l
)\ngone_A"t + )\n/ fn(T)e_/\"(t_T)dT
0

An /t fn(T)ei)\”(tiT)dT
Fult) — (0 /f =) g7

< Clpn| Ane 2t + C | fu(t)| + C - Cre ™t +

<

< Clon| et +C

<

<C ‘Spn| )‘nei)\nt +C

rn.
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From the smoothness of the function f(x,t), required when constructing a formal solution,

it follows that | f,,(¢)| = M, and moreover, the series > 7, | Fult) ‘2 converges for any fixed

t € [0,T]. Therefore, the following inequality is true:

sup \Y;’(x)Tn(t)\ < O\ T (1) < Clpn| Ane™ Mt +C %

.2 O
fn(t)‘ + =5+ Gz
0<z<li n

So, the series Y 2, Y,”(2)T,(t) converges uniformly, hence there exists

o0

Uge (T, 1) = Z Y (2)T(t).

n=1

Since Ugzy(z,t) = k% (ug(x,t) — f(x,t)), then from the conditions wus(x,t) € C(Q) and

f(z,t) € C(Q) it follows that uzz(x,t) € C(Q). Thus, we have proven the existence of the
solution from the class
u(z,t) € C(Q) NCH{ (D) NCoY ().

Now we prove the uniqueness. Let @(x,t) and a(z,t) be solutions to Problem (1)—(5).
Then their difference u(x,t) = a(x,t) — u(x,t) satisfies the homogeneous heat conduction
equation with homogeneous initial and boundary conditions and conjugation conditions.
Then from the representation of solution (22) it follows that w(z,t) = 0, since p(z) = 0
and f(x,t) = 0. Thus, Theorem 1 is proven.

Similar theorems can be proven for Initial boundary value problem (1)—(4) with Boundary
conditions (6), (7) and (8).
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Kottnpimmos Y.K., Campioexos M.A. KOOOUIMEHTI Y3IJIICTI 2KBIJIVOTKI3I'T-
HITIK TEHAEY YIITH ITEKAPAJIBIK ECEIITEP/I ®YPBE O/IICIMEH HITEITY

By makamama meHenreH apasibikTa KO3 UIneHTi 66 iKTi-TypakKThl KbLIYOTKISTIIITIK
TeHJey VIIiH Keibip 6acTalKbl IIeKapaJibIK, €CelTep KAPaCThIPLLIAAb. ANHLIMAILLIADILI
aXKbIpaTy OJIiCiH KOJIJIaHA OTBIPBIN, KOWBLIFaH MOcese CIHEKTPJIK eCelKe KeJTipiaesl »KoHe
AJIBIHFAH CIEKTPJIK €CeNTiH MEHINKTI MOHIEP] MEH MEHIITIKTI PYHKIUIIAPHI TaObLIaIbl. Men-
mikTi GyHKIUIap XKyiecinin Pucc 6asucid KypailThIHB KOpCeTLIai. Opl Kapail, KOibLIraH
bacTanKbl-TIIIeKapaJsblK, eCenTep/IiH, MenliMIepiHin 6ap »KoHe XKaJFbI3 eKeHIIT TypaJjbl Teope-
MaHBI JI9JIe I IeMi3.

Kiammix cesdep. 2KbLIyeTKisrimTik TeHaey, y3iaicTi KoadUIUeHTTep, MEHIIIKTI MOH-
Jiep, MEHITKTI (pyHKIUIAD, AHBIMAJIBLIAD/IBI ayKbIPATY OIICI.

Kotnpimmos ¥V.K., Cagpioexkos M.A. PEIIIEHNE KPAEBBIX 3AJAY /14 YPABHE-
HIA TEIIONNPOBOJAHOCTU C KYCOYHO-ITOCTOAHHBIM KOOOUIMEHTOM
METOIOM ®YPLE

B manHO# cTarhbe paccMaTpHUBAIOTCS HEKOTOPBIE HAYAJBLHO-KPAEBbIE 3aIa4i JJIsl YpaBHEe-
HUS TEIIONPOBOIHOCTH B OIPAHUIEHHOM OTPE3Ke C KYyCOIHO-TIOCTOSIHHBIM KOI(MDMUITHEHTOM.
MeTtonom pa3zieneHus mepeMeHHbIX, TIOCTABICHHAs 33]a49a CBE/ICHA K CIEKTPAJILHON 3a1ade u
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HaiiZeHbl COOCTBEHHBIE 3HAUEHHST U COOCTBEHHBIE (DYHKIIUU IIOJIYUEHHON CIEKTPAILHON 3a/1a-
qn. IlokazaHa, 9TO cucTeMa cOOCTBEHHBIX (pyHKIMH oOpasyer 6aszuc Pucca. [laee nmokazana
TeopeMa CYIECTBOBAHME U €IMHCTBEHHOCTH PEIeHNs] MOCTAaBJIEHHBIX HAYaIbHO-KPAaEeBbIX 3a-
Jad.

Knarouesvie caosa. YpaBHeHue TEILIONPOBOIHOCTH, PAa3PbIBHbIE KOI(MDDUIINEHTHI, COOCTBEH-
Hble 3HAYeHHsI, COOCTBEHHbIE (DYHKIMHI, METOJ Pa3deIeHusl IEPEMEHHDIX.
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