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Abstract. In this article, the symmetric operator L, corresponding to the boundary value problem is
represented as the difference of two commuting operators A and B. The uniqueness of the solution is
guaranteed if the spectra of the operators A and B do not intersect and the domain of the operator B
is given by non-degenerate boundary conditions. In contrast to the existing papers, the criterion for the
uniqueness of the boundary value problem formulated in this paper is satisfied even when the system of
root functions of the operator B does not form a basis in the corresponding space. At the same time,
only the closedness of the linear operator A is required.
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1 Introduction

In this paper, we consider a differential-operator equation of the form

2
—gt;b—l—q(t)u:Au—i-f(t)7 0<t<T <o (1)

with non-degenerate boundary conditions in time

Ti(u) = anu(0) + ajpu'(0) + aigu/(T) + ayu'(T) =0, i=1,2. (2)
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Criteria for the uniqueness of a solution for some differential-operator equation 7

It is also assumed that the operator A does not depend on t and is a closed linear operator
in a separable Hilbert space H. In this paper, no other restrictions on the operator A are
assumed. Recall that boundary conditions (2) are called non-degenerate if one of the following
three requirements is satisfied:

1) ai4 a2 #0
azy a2 ’
ai4 a2 ailp ai4 aiz a2
2) =0, + #0,
az4 Aa22 az; a4 a3 a2
ai4 ai2 ailp ai4 ai a12 ai;p ai
3) =0, 4| 013 =0, 31 +£0.
az4 a2 a1 a4 a3 a2 a1 a3

Otherwise, the coefficients a;; of the boundary conditions are arbitrary and can be complex
numbers. The coefficient ¢(t) of the differential expression on the left side of (1) is assumed
to be an integrable complex-valued function on [0, 7.

The main goal of this article is to establish a criterion for the uniqueness of the solution
of problem (1)-(2). There are various ways to prove uniqueness. Usually, the maximum
principle [1] and its various generalizations like the Hopf [2] and Zaremba-Giraud [3] principles
are effective means of proving uniqueness. For task (1)-(2), these principles may not be
fulfilled. Therefore, we need a different toolkit, different from the extreme principle.

We note the work of I.V. Tikhonov [4], devoted to uniqueness theorems in linear non-local
problems for abstract differential equations. 1.V. Tikhonov’s method uniqueness proof is based
on the “quotient method” for entire functions of exponential type. [5] studied the question of
the uniqueness of the solution of the heat equation with a non-local condition expressed as
an integral over time on a fixed interval. They succeeded in giving a complete description
of the uniqueness classes in terms of the behavior of solutions as || — oco. In this paper,
I.V. Tikhonov’s method is adapted for operators whose differential part is a second-order
operator with general boundary conditions.

In this paper, the operator symmetric L corresponding to the boundary value problem
(1)—(2) is represented as the difference of two commuting operators A and B. The uniqueness
of the solution is guaranteed if the spectra of the operators A and B do not intersect and the
domain of the operator B is given by non-degenerate boundary conditions. In contrast to the
existing papers [6-8], the criterion for the uniqueness of the boundary value problem (1)—(2)
formulated in this paper is satisfied even when the system of root functions of the operator B
does not form a basis in the corresponding space. At the same time, only the closedness of the
linear operator A is required. For example, in our case, the unbounded operator A may be
non-semibounded or have an empty spectrum. Note that in the papers [6-8] the operator A
was required to be semibounded, while the operator B must have a system of root functions
forming a basis.
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8 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

The method of proving the uniqueness of the solution of the boundary value problem
(1)—(2) is based on the method of guiding functionals by M.G. Krein [9] with their subsequent
estimation when the spectral parameter infinitely increases in the complex region.

2 On the spectral properties of the Sturm—Liouville operator on a segment

In this section, we consider the boundary value problem generated on the interval (0,7) by
the Sturm-Liouville equation

—w”(t) + q)w(t) = pw(t), 0<t<T < oo (3)
and the following two boundary conditions
Li(w) = ainw(0) + aipw’(0) + aizw(T) 4 aiw'(T) =0, i=1,2, (4)

where ¢(t) is an integrable complex-valued function, a;; are arbitrary complex numbers.
Further, the fundamental system of solutions to Equation (3) determined by the initial
data ¢(p,0) = s’ (1, 0) = 1, ¢ (11,0) = s(u, 0) = 0, will be denoted by ¢(u, t), s(u, t).
We introduce the characteristic function by the formula

x(w) = Jia + Jaa + Jizs(u, T) + J1a8' (1, T) + Jaoc(u, T) + Jaoc (1, T), (5)

where J;; = ay;a2; — ag;ja1; is the determinant composed of the i-th and j-th columns of the
coefficient matrix of the boundary conditions

ain a2 a3 ai )
a1 azy a3 ag )
We denote by wi(t, p), wa(t, ) the solutions of the homogeneous equation (3) and the

boundary conditions
Fl(wl) = Fg(wg) = 07

[y (w2) = Ta(w1) = x(u).

The eigenvalue p, of the boundary value problem (3)-(4) is called an eigenvalue of mul-
tiplicity p if u,, is a multiplicity p root of the function x(u).

Because " N
0 0
mri(wj) =T (WU)J) g
then the functions
1o
wik(t) = HaTLkwj(t,M) (6)
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for p = py, satisfy both boundary conditions (4) if 0 < k < p — 1. The functions
wio(t),...,wip—1(t) (i = 1,2) form a chain in which the first nonzero function w;,(t) is
its eigenfunctions, and the following are its associated functions. Differentiating equation (3)
k times with respect to u, we conclude that the eigenfunction and associated functions of the
chain satisfy the equations

—w; 1 (t) + q()w; k(t) = pawik(t) + wip—1(t), 0<t<T

and the boundary conditions (4). To avoid misunderstandings, we emphasize that both chains,
wi,0(t),..., w1 p—1(t) and wa(t),. .., wsp—1(t), may consist of the same functions. For us, it
is only essential that, in addition to eigenfunctions and associated functions, the chains can
include only functions that are identically equal to zero.

Denote by B the operator given by the differential expression Bw(t) = —w”(t) + q(t)w(t)
and the domain given by the boundary conditions (4).

Let o(B) be the spectrum, that is, the set of all eigenvalues p, of the boundary value
problem (3)—(4), p,— their multiplicity. According to the previous function

1 oF .
Emwj(tvﬂﬂp:um 0<k<p,—1, ppco(B), i=12

are either identically equal to zero or are eigenfunctions or associated functions of this bound-
ary value problem.

The operator has a dense domain in the space Ly (0, 7). Therefore, there is a unique adjoint
operator B*. The action of the adjoint operator B* is given by the formula

Brr(t) = =7"(t) + q(t)7 (1), (7)

where Z means the conjugate of the complex number z.
Let the domain of the operator be given by the boundary forms Vi (-) and Va(+), i.e.

D(B*) = {r € W3[0,T]: Vi(r) =0, Va(r) =0} . (8)
Here, the boundary forms of the adjoint problem have the following form
Vi(r) = a;y7(0) + ajy7'(0) + ajs7(T) + ajy7'(T) =0, i=1,2. (9)

We introduce a fundamental system of solutions {R;(t,f), R2(¢,1z)} of a homogeneous
adjoint equation
—R{(t,7) +q(t)Rs(t, 1) = E Rs(t, ), 0<t<T (10)

satisfying the Cauchy condition at zero

KAZAKH MATHEMATICAL JOURNAL, 22:3 (2022) 6-20



10 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

Note that all solutions {R;(t, ), ¢ = 1,2} are entire functions of . Denote by x*(f) the
characteristic determinant given by the formula

X" (1) = det(V,,(R;))-

The zeros, taking into account their multiplicities of the characteristic determinant x* (@),
represent the eigenvalues of the adjoint operator B*.

We also introduce 7;(¢, ) for i = 1,2 solutions of the homogeneous adjoint equation (10)
with heterogeneous conditions

Vj(7_5) = 5j,s : X*(ﬁ)v .7 =1,2, (12)

where J; s is the Kronecker symbol.
Let po be the zero of the characteristic determinant x () and its multiplicity equals my.
Then for any s = 1,2 in the ordered row

10 1 gt _
Ts(tv MO)? ﬁﬁTs(u ,U’U)7 RRE) ( )‘ aﬂmo—lTS(t7 MO) (13)

me — 1

the first non-zero function represents the eigenfunction of the operator B*, and the subsequent
members of the row give the chain of associated functions generated by it.

In what follows, the eigenvalues of the operator B* will be denoted by &, ¥ > 1, and the
corresponding eigenvalues and associated functions by 7,(t), v > 1.

In work [10], the following assertion was proved.

Theorem 1. [10]| Let the domain of the operator B be given by non-degenerate boundary
conditions. Then the domain of definition of the adjoint operator B* is also given by non-
degenerate boundary conditions.

We also need the following assertion [10].

Theorem 2. [10]| Let the operator B be generaled by non-degenerate boundary conditions.
Then the system of eigenfunctions and associated functions of the operator B is a complete
system in the space Lo(0,T).

Applying Theorems 2.1 and 2.2 to the adjoint operator B*, we can formulate the assertion.

Theorem 3. Let one of the requirements 1),2),3) be satisfied. Then the system of eigenfunc-
tions and associated functions of the operator B* is complete in the space Lo(0,T).

For further purposes, it is convenient for us to reformulate Lemmas 1.3.1 and 1.3.2, as
well as Corollaries 1 and 2 from the monograph [10] in the following form.

KAZAKH MATHEMATICAL JOURNAL, 22:3 (2022) 6-20



Criteria for the uniqueness of a solution for some differential-operator equation 11

Lemma 1. [10] For all functions f(t) € L1(0,T) the following equalities hold:

T T
lim e~ ™7l / f(t)cos ptdt = lim e 1™ / f(t)sin ptdt = 0. (14)
0 0

lp|—o0 |p|—00

We denote by Rir(t,\), Rar(t,A), (A = f1) the solution of Equation (11) with the initial
data
Rir(T, ) = Ryp (T, X)) =1,
R\ (T, \) = Ror (T, \) =

Corollary 1. [10] For all functions f(x) € L1(0,T) the following equalities hold:

T
lim e~ meTl/ FORL(t, p?)dt = lim e~ fm”'/ F(t)Rup(t, p?)dt = 0.
0

|p|—00 |p|—00

T T
lim eImpTlf f(t)pRa(t, p*)dt = lim e|Im"’T/ f(t)pRar(t, p*)dt = 0. (15)
Corollary 2. [10] For all functions f(t) € L1(0,T') the following equalities hold:
T
lim e—”mf’T/ fOTt, p2)dt =0, i=1,2. (16)
0

|p|—o0

Lemma 2. [10] If the boundary conditions in the boundary value problem (3)-(4) are non-
degenerate, then there exists a constant C > 0 and a sequence of infinitely expanding contours
K, on the p—planes on which the following inequalities hold:

@) > Lol O e K, (17)

3 Main result and its proof

In this section, we formulate and prove a criterion for the uniqueness of the solution of the
boundary value problem (1)-(2). In accordance with the notation of Section 1, the boundary
value problem (1)—(2) can be written in the operator form

Bu(t) = Au(t) + f(t), te(0,T). (18)

Here, the operator B acts on the variable ¢ and its spectral properties are given in Sec-
tion 1. The operator A is a closed linear operator in a separable Hilbert space H and does
not depend on t.
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Theorem 4. Let the matriz of boundary coefficients

J— ( ailr G122 a13 Q14 >
az1 a2 a3 A24
rank 2 is subject to the requirement: at least one of the numbers Jyo, Jia + J32 and Ji3 is
different from zero, where Ji; = aipa; — asigaij and assume that the operator A is a closed

linear operator in a separable Hilbert space H and does not depend ont. Then the homogeneous

operator equation
Bu = Au

has only the trivial solution uw € D(B) N D(A) if and only if
o(B)No(A) =g,
where o(B) and o(A) are spectra of the operators B and A, respectively.

Proof. Proof of necessity. Let u, be some eigenvalue of the operator B (with own function
wy(t)) is also an eigenvalue of the operator A. That is, there is an eigenvalue A4 of the operator
A, which is the same as the eigenvalue p, of the operator B. Suppose that the eigenvalue Ag
of the operator A corresponds to the eigenvalue vs. Then the function u(t) = wy,(t)-vs will be
a non-trivial solution of the homogeneous equation (17). The necessity of the requirements of
Theorem 1 is proved.

Proof of sufficiency. Let none of {u,, n > 1} eigenvalues of the operator B is not an
eigenvalue of the operator A. In other words, if A\ is an arbitrary eigenvalue of the operator
A, then x(As) # 0.

We show that the solution u(t) of the homogeneous operator equation (18) is identically
equal to zero in the space L2((0,7); H).

To do this, we introduce functions with values in the Hilbert space H for j = 1,2

T
@ = [ HEmuo (19)

Functions of the type Fi(f) and F»>(@) were introduced by M.G. Krein in [9] and are called
guiding functionals.

According to the Lagrange formula [11] the functions AF;(f), for j = 1, 2, can be rewritten
as:

T T
AR = [ 7 - Auti = [ 5 Butn -

T
/0 u(t) (=7 (6.70) + a()73(t.71) ) dt + T (u) Va(7y) + Da(u) Va(7)+

T3(u) Va(7j) + Ta(u) Va(75), (20)

KAZAKH MATHEMATICAL JOURNAL, 22:3 (2022) 6-20



Criteria for the uniqueness of a solution for some differential-operator equation 13

where I'3(-) and T'y(-) are linear forms [12]|, complementary linear forms I'i(-), I'2(+), up
to a Dirichlet system of order 4. In [12], it is stated that the system of linear forms
{Vi(+), Va(+), Va(-), Va(-)} is determined by {T'i(-), T'2(-),I'3(-), T'4(-)} uniquely and forms a
Dirichlet system of order 4.

Since the T'1(u) = T'a(u) = 0, Vi(12) = Va(m) = 0, V(1) = Va(m2) = x* (1), then relation
(20) takes the form

AFj() = pEj(p) +Ts—j(w) - x* (@), 7 =1,2. (21)

If 1o is an arbitrary zero of multiplicity mg of the characteristic function (i), then the last
relation (21) implies the equalities

AF;(fig) = po Fj(fio),

dF} (o) dF} (o) __
A—2 = J F; 22
Rt ot N i 21170
Aimmo_le(ﬂo) = Ho T o1 + =2
Since pp€o(A), the relations (22) imply the equalities
d*F; (Tig
dwzo at s=0,1,....mg—1. (23)
Fi(m
Then for j = 1,2 the relations i Eu) are entire functions of [z, since at the point & = iy
X"
Fi(n
the relations i EH g have a removable singularity.
X" (B
Now we pass to the second step of the proof. Since H is a separable Hilbert space, then
there is a counting system of elements vy, v, ..., whose linear span is dense in H.

We obtain the dot product of the function F;(z) and the element v;, and we denote them
by
Ghp) = (Fj(m), viym, j=12, k=1,2,..., (24)
where (-, -) g is the dot product in Hilbert space H.

Multiplicity of zeros of the functional Gé? (1) not less than multiplicities of zeros of functions
F;(p). Therefore, the relationship

G ()
X* ()

Qh(m) = (25)

define entire functions from 7.
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Further analysis of the entire functions Qé‘? (1) is based on the technique of estimating the

order of growth and the type of entire functions. Note that the entire function Q? (1) does
not depend on the choice of the fundamental system of solutions of the homogeneous equation

(11).
According to Lemma 2.7, there exists a constant M and a sequence of infinitely expanding
closed contours €2, such that p € {2, and

Q5 ()| < M |p| |G (p?)| e T #IT
for all admissible index values k and j.

The last estimate and Corollary 2.6 imply the limit equalities

. 1 . 5 4
—_ N ey = > .
nlggogelgf\p%(p )N=0, j=12 V>1

It follows that the entire functions Q?(ﬁz) at p — oo grow slower than the first degree |p|.
Then, by the Liouville theorem, we get that

QP =fF j=12 Vk>1,

where ff is some constants.
That’s why

G5(E*) = f} - x*(m), VueC. (26)

Since

t, ) =
e =| W W
then relations (26) take the form

{ Va(Ra)af ;) — Va(R1)ab (1) = f£ x* (), (27)
~Vi(Ra)af (7) — Vi(Ri)ab(m) = f3 x* (),

where -
ob(i) = ([ Rttt o, §=1.2
Consequently, from the system (27) we obtain the equality
{Vi(R1)Va(Ra) — Vi(Ra)Va(R1)} o5 (1) = x* (1) { fI Vi (R2) + f5Va(Ra)}.

Since

X* () = Vi(R1) Va(R2) — Vi(Rz) Va(Ry),

KAZAKH MATHEMATICAL JOURNAL, 22:3 (2022) 6-20
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then
af (1) = fFVi(Ra) + f5 Va(Ry).

We recall the definition (9) of the boundary forms V; and V3 of the adjoint problem. Then
we have the relation

a5 (1) = (ff afy + /3 aby) + (fT als + f3 ass) Re(T, 1)+

(ff @iy + f3 aby) Ry(T, 7). (28)
We consider the relation (28) for 4 — £oo. Recall [10] that the asymptotic formulas

. — T . —
ratr) = S [ g
RY(T70) = cos /T + /0 g L / RO (20

where K () and K;(-) are some integrated functlons.
Using Corollary 2.5 and the formulas (29), the relation (28) can be represented in the
following form

(5%) = (ff GTQ + f§ a;z) + (ff a’{s + f a23) <Sin\>/ﬁ/jT n 51(\\/(517)) .
(ffaly+ f5aby) (cos VET + 52(\/ﬁ)> 7 (30)

where the functions d, €1 and ¢4 tend to zero at yu — oo.
This is possible if and only if the numbers

(ff afy + fFaby), (ffals + f5 ass), (ff iy + f5 aby).

are identically equal to zero.
Consequently, from (28) it follows that of (%) = 0.
From the last equality it follows that

/ R2 t ,u dt ’Uk> 0, vk > 1.

Since the linear span of the system {vg, Vk > 1} is dense in H, then we obtain the relation

T
/ o) u(t)dt =0, VpeC.
0
The required equality follows from the last relation
u(t)y=0, Vte(0,T).

In order to verify this, it is necessary to repeat the arguments from ([10], page 42). Thus,
Theorem 3.1 is proved. O

KAZAKH MATHEMATICAL JOURNAL, 22:3 (2022) 6-20



16 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

We give the following examples as applied to Theorem 3.1 for some operators A in equa-
tions (1).

Example 1. Let Q C RY be some bounded area with a smooth boundary 0. In work [23] op-

erator A is defined as A(x,D) = Y. ao(x)D*, which is a formally self-adjoint elliptic differ-
lal <21

ential operator of order 21 with sufficiently smooth coefficients aq(x), where o = (aq,...,an)

is a multi-index and D = (D1,...,Dy), D; = %.

The domain of the operator A is given by the following boundary conditions in x:

Bju(z,t) = Z boj(x)Du(x,t) =0, 0<m; <2l-1, j=1,2,...,1, xze€dQ (31)

|| <

where the coefficients by j(x) are sufficiently smooth given functions. The following conclusion
follows from Theorem 3.1.

Conclusion 1. Let the operator B satisfy the requirements of Theorem 3.1. Then the homo-
geneous operator equation
0%u
ot?

with initial-boundary conditions (2) and (31) has only a trivial solution w € D(B) N D(A) if
and only if

+q(t)u=Au, x€Q, te(0,T) (32)

o(B)No(A) =2,
where o(B) and o(A) are spectra of the operators B and A, respectively.

This strengthens the main result of [23], since Conclusion 3.3 is valid for the operator B
with non-degenerate boundary conditions. At the same time, in [23|, the operator B was
required to have the boundary conditions be strongly regular in the sense of Birkhoff [11].
The class of non-degenerate boundary conditions is wider than the class of strongly Birkhoff-
regular boundary conditions.

Example 2. The operator A is generated by the standard wave equation Av(-) = vga(-) —vyy(+)
in the two-dimensional region Q bounded by the segment OB : 0 < x < 1 azes y = 0 and
characteristics OC :x+y=0, BC :x —y=1.

The domain of the operator A is given by the following boundary conditions with a shift

along (z,y):
w(®,0;6) =0, 0<0<1,

0 0 f+1 6-1 1
- — - - - < < — .
u<2, 2,t) au( 5 5 7t>, 0<46 5 0<t< (33)

The following conclusion follows from Theorem 3.1.
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Conclusion 2. Let the conditions of Theorem 3.1 be satisfied for the operator B. Then the
following homogeneous operator equation

0%u

5z T () u = Uge (7, y51) — uyy(2,95t), 2€Q, te(0,T) (34)

with initial-boundary conditions (2) and (33) has only a trivial solution uw € D(B) N D(A) if
and only if the spectra of these operators B and A do not intersect.

This strengthens the main result of the work [24].

Example 3. The operator A is generated by the Tricomi equation. Let Q € R? be a finite
domain bounded for y > 0 by the Lyapunov curve o, ending in a neighborhood of points
0(0,0) and B(1,0) small arcs of the “normal curve” oo, and for y < 0 by the characteristics
ocC :z— %(fy)?’/2 =0, BC:x+ %(fy)3/2 =1 equations

Av(+) = yuzz(-) + vyy ().

The boundary conditions for the Tricomi operator are given by the Dirichlet condition on the
elliptic part and the fractional derivative traces of the solution along the characteristics:

2
u(x,y;t)‘aoz(), 0o : <£L'—;> —i—%y?’:i, (35)
DS (u(vo(@) a™) + (1 =)Dy (wla(@) (1 =) *) =0, (36)

where

u(xol@) = (m - [32“’”]2/3> o<es<

u(aa(e) = u ( - |22 2/3) ,

Application of Theorem 3.1 leads to the following conclusion.

N =
IN
8
IN
—_

Conclusion 3. Let the conditions of Theorem 3.1 be satisfied for the operator B. Then the
following homogeneous operator equation

0%u
gz q(t)u = yuzz (T, y;t) +uyy(z,y5t), z€Q, te(0,T) (37)

with the initial-boundary conditions (2), (34), and (35) has only a trivial solution uw € D(B)N
D(A) if and only if the spectra of these operators B and A do not intersect.
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This strengthens the main result of the work [25].
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Kanroxns B. E., Komanos B. JI. KEIBIP TUQOEPEHIINAJIIBL-OIIEPATOP/IBIK
TEHJIEY YIIITH ITENIIMIHTH BIPETEILIIK KPUTEPHIIL

By makamaga exi koMmMyTanusiiaHaTein A KoHe B omepaTop/iapIblH aifbIpbIMbI TYPIHIE
HepiyireH MIeKapaJiblK, ecerke COfKeC KeJETIH CUMMETPHUSIIBI L omepaTopbl KapacThIPBLIAIL.
Erep A omepaTopbiHBIH cieKTpi B 0mlepaTOpbIHBIH CIIEKTPIMEH KUBLTLICTANTHIH 60/1ca KoHe B
OIEPATOPBIHBIH AHBIKTAJIY ODJIBICHI A3FBIHIAJIMAFAH MIEKAPAJBIK IapTTapMeH Oepiice, OHJIA
Lu = (B — A)u = 0 oneparop/iblk TeH ey menniMiniy 6ipereiimirine kemiamik Gepinesi. Byn
JKYMBICTA TYXKBIPBIMIAJIFAH IMEKAPAJIBIK ecenTiH Oipereiiyiik kpurepuiii KOJJaHBICTArbl €H-
DeKTep/IiH HOTHUXKe/TePIHEH alibIPMAIIBLILIFBI B ormeparopbiubia TYDIpaiK pyHKIHUAIap Kyiiec
colikec KeHICTIKTe 6a3nc KypMaraH Ke3Je e KAHAFATTAHIBIPLLIAIb. Byl perre A ChI3BIKTHI
OLIEPATOPBIHBIH, TYABIKTHIFLI FAHA KAYKET.

Tyitiu cesaep: cummerpusiibl oneparopiap, LItypyv—/Inysusn Teneyi, a3rbiH1aIMaraH
IMeKAPAJIBIK, IIIApTTap, MIeNIiMHIH 6ipereiisiiri, onepaTop/bH MEHITIKTI MOHIEepi, TOJBIK OPTO-
TOHAJIBIBI YKYyHesep, OmepaToOPAbIH, CITEKTPI.

Kanryxun B. E., Komanos B. JI. KPUTEPUI EJMHCTBEHHOCTHY PELIEHUS O/-
HOT'O TNODEPEHITMAJIBHO-OITEPATOPHOT'O YPABHEHUN 41

B nanHOit cTarhbe cHMMETPUYHBIN ollepaTop L, COOTBETCTBYIOMKM KpaeBoil 3a1ad9e, Ipe/i-
CTABJSIETCS B BUJE PA3HOCTH JBYX KOMMyTHpymux omneparopos A u B. ExuacTBeHHOCTH
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pertenusi omepaTopHoro ypashenuss Lu = (B — A)u = 0 rapaHTHDPYeTCsi, €CJIH COEKTPBI OTe-
paropoB A u B He mepecekaiorcd u 00JaCThb OLPEAeIeHns oneparopa B 3ajaHa HEBbIPOXK-
JEHHLIMI TPAHUIHLIME YCJIOBUAMHU. B oT/imdne OT CymecTBYIOMNX Pe3y/IbTaToB pabot, cdop-
MYJIMPOBAHHbBIA B JAaHHOU Crarbe KpUTepuil eJuHCTBEHHOCTU KPaeBOHd 33a4u BbIIIOJHACTCH
Jayke B TOM CJIydae, KOTJa CUCTeMa KOPHEBLIX (PyHKIWit omeparopa B me obpasyer Hazu-
ca B COOTBETCTBYIOIIEM IpocTpaHcTBe. Ilpn aToM Tpebyercss JHIIL 3aMKHYTOCTD JUHEHHOTO
omeparopa A.

Kuroduesbie ciioBa: cuMMeTpudHbIe ommepaTopsl, ypapuenue LTypma—/luyBuiis, HeBLI-
POXKAECHHBIC I'DAHUYHBIE YCJIO0BHUA, CAMHCTBEHHOCTh PEIICHUA, CO6CTB€HHbIe SHaQUeHUsd Oliepa-
TOpa, IOJIHbIE OPTOrOHAJIBHBIE CHCTEMbI, CIIEKTP OIlePaTopa.
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