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Abstract. In this article, the symmetric operator L, corresponding to the boundary value problem is

represented as the di�erence of two commuting operators A and B. The uniqueness of the solution is

guaranteed if the spectra of the operators A and B do not intersect and the domain of the operator B

is given by non-degenerate boundary conditions. In contrast to the existing papers, the criterion for the

uniqueness of the boundary value problem formulated in this paper is satis�ed even when the system of

root functions of the operator B does not form a basis in the corresponding space. At the same time,

only the closedness of the linear operator A is required.
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1 Introduction

In this paper, we consider a di�erential-operator equation of the form

−∂2u

∂t2
+ q(t)u = Au+ f(t), 0 < t < T < ∞ (1)

with non-degenerate boundary conditions in time

Γi(u) = ai1u(0) + ai2u
′(0) + ai3u

′(T ) + ai4u
′(T ) = 0, i = 1, 2. (2)
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Criteria for the uniqueness of a solution for some di�erential-operator equation 7

It is also assumed that the operator A does not depend on t and is a closed linear operator
in a separable Hilbert space H. In this paper, no other restrictions on the operator A are
assumed. Recall that boundary conditions (2) are called non-degenerate if one of the following
three requirements is satis�ed:

1)

∣∣∣∣ a14 a12
a24 a22

∣∣∣∣ ̸= 0,

2)

∣∣∣∣ a14 a12
a24 a22

∣∣∣∣ = 0,

∣∣∣∣ a11 a14
a21 a24

∣∣∣∣+ ∣∣∣∣ a13 a12
a23 a22

∣∣∣∣ ̸= 0,

3)

∣∣∣∣ a14 a12
a24 a22

∣∣∣∣ = 0,

∣∣∣∣ a11 a14
a21 a24

∣∣∣∣+ ∣∣∣∣ a13 a12
a23 a22

∣∣∣∣ = 0,

∣∣∣∣ a11 a13
a21 a23

∣∣∣∣ ̸= 0.

Otherwise, the coe�cients aij of the boundary conditions are arbitrary and can be complex
numbers. The coe�cient q(t) of the di�erential expression on the left side of (1) is assumed
to be an integrable complex-valued function on [0, T ].

The main goal of this article is to establish a criterion for the uniqueness of the solution
of problem (1)�(2). There are various ways to prove uniqueness. Usually, the maximum
principle [1] and its various generalizations like the Hopf [2] and Zaremba-Giraud [3] principles
are e�ective means of proving uniqueness. For task (1)�(2), these principles may not be
ful�lled. Therefore, we need a di�erent toolkit, di�erent from the extreme principle.

We note the work of I.V. Tikhonov [4], devoted to uniqueness theorems in linear non-local
problems for abstract di�erential equations. I.V. Tikhonov's method uniqueness proof is based
on the �quotient method� for entire functions of exponential type. [5] studied the question of
the uniqueness of the solution of the heat equation with a non-local condition expressed as
an integral over time on a �xed interval. They succeeded in giving a complete description
of the uniqueness classes in terms of the behavior of solutions as |x| → ∞. In this paper,
I.V. Tikhonov's method is adapted for operators whose di�erential part is a second-order
operator with general boundary conditions.

In this paper, the operator symmetric L corresponding to the boundary value problem
(1)�(2) is represented as the di�erence of two commuting operators A and B. The uniqueness
of the solution is guaranteed if the spectra of the operators A and B do not intersect and the
domain of the operator B is given by non-degenerate boundary conditions. In contrast to the
existing papers [6�8], the criterion for the uniqueness of the boundary value problem (1)�(2)
formulated in this paper is satis�ed even when the system of root functions of the operator B
does not form a basis in the corresponding space. At the same time, only the closedness of the
linear operator A is required. For example, in our case, the unbounded operator A may be
non-semibounded or have an empty spectrum. Note that in the papers [6�8] the operator A
was required to be semibounded, while the operator B must have a system of root functions
forming a basis.
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8 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

The method of proving the uniqueness of the solution of the boundary value problem
(1)�(2) is based on the method of guiding functionals by M.G. Krein [9] with their subsequent
estimation when the spectral parameter in�nitely increases in the complex region.

2 On the spectral properties of the Sturm�Liouville operator on a segment

In this section, we consider the boundary value problem generated on the interval (0, T ) by
the Sturm�Liouville equation

−w′′(t) + q(t)w(t) = µw(t), 0 < t < T < ∞ (3)

and the following two boundary conditions

Γi(w) = ai1w(0) + ai2w
′(0) + ai3w(T ) + ai4w

′(T ) = 0, i = 1, 2, (4)

where q(t) is an integrable complex-valued function, aik are arbitrary complex numbers.
Further, the fundamental system of solutions to Equation (3) determined by the initial

data c(µ, 0) = s′(µ, 0) = 1, c′(µ, 0) = s(µ, 0) = 0, will be denoted by c(µ, t), s(µ, t).

We introduce the characteristic function by the formula

χ(µ) = J12 + J34 + J13s(µ, T ) + J14s
′(µ, T ) + J32c(µ, T ) + J42c

′(µ, T ), (5)

where Jij = a1ia2j − a2ia1j is the determinant composed of the i-th and j-th columns of the
coe�cient matrix of the boundary conditions(

a11 a12 a13 a14
a21 a22 a23 a24

)
.

We denote by w1(t, µ), w2(t, µ) the solutions of the homogeneous equation (3) and the
boundary conditions

Γ1(w1) = Γ2(w2) = 0,

Γ1(w2) = Γ2(w1) = χ(µ).

The eigenvalue µn of the boundary value problem (3)�(4) is called an eigenvalue of mul-
tiplicity p if µn is a multiplicity p root of the function χ(µ).

Because
∂k

∂µk
Γi(wj) = Γi

(
∂k

∂µk
wj

)
,

then the functions

wi,k(t) =
1

k!

∂k

∂µk
wj(t, µ) (6)
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for µ = µn satisfy both boundary conditions (4) if 0 ≤ k ≤ p − 1. The functions
wi,0(t), . . . , wi,p−1(t) (i = 1, 2) form a chain in which the �rst nonzero function wi,li(t) is
its eigenfunctions, and the following are its associated functions. Di�erentiating equation (3)
k times with respect to µ, we conclude that the eigenfunction and associated functions of the
chain satisfy the equations

−w′′
i,k(t) + q(t)wi,k(t) = µnwi,k(t) + wi,k−1(t), 0 < t < T

and the boundary conditions (4). To avoid misunderstandings, we emphasize that both chains,
w1,0(t), . . . , w1,p−1(t) and w2,0(t), . . . , w2,p−1(t), may consist of the same functions. For us, it
is only essential that, in addition to eigenfunctions and associated functions, the chains can
include only functions that are identically equal to zero.

Denote by B the operator given by the di�erential expression Bw(t) = −w′′(t) + q(t)w(t)
and the domain given by the boundary conditions (4).

Let σ(B) be the spectrum, that is, the set of all eigenvalues µn of the boundary value
problem (3)�(4), pn� their multiplicity. According to the previous function

1

k!

∂k

∂µk
wj(t, µ)

∣∣
µ=µn

, 0 ≤ k ≤ pn − 1, µn ∈ σ(B), i = 1, 2

are either identically equal to zero or are eigenfunctions or associated functions of this bound-
ary value problem.

The operator has a dense domain in the space L2(0, T ). Therefore, there is a unique adjoint
operator B∗. The action of the adjoint operator B∗ is given by the formula

B∗τ(t) = −τ ′′(t) + q(t)τ(t), (7)

where z means the conjugate of the complex number z.
Let the domain of the operator be given by the boundary forms V1(·) and V2(·), i.e.

D(B∗) =
{
τ ∈ W 2

2 [0, T ] : V1(τ) = 0, V2(τ) = 0
}
. (8)

Here, the boundary forms of the adjoint problem have the following form

Vi(τ) = a∗i1τ(0) + a∗i2τ
′(0) + a∗i3τ(T ) + a∗i4τ

′(T ) = 0, i = 1, 2. (9)

We introduce a fundamental system of solutions {R1(t, µ), R2(t, µ)} of a homogeneous
adjoint equation

−R′′
s(t, µ) + q(t)Rs(t, µ) = µRs(t, µ), 0 < t < T (10)

satisfying the Cauchy condition at zero

R1(0, µ) = 1, R2(0, µ) = 0, R′
1(0, µ) = 0, R′

2(0, µ) = 1. (11)
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10 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

Note that all solutions {Ri(t, µ), i = 1, 2} are entire functions of µ. Denote by χ∗(µ) the
characteristic determinant given by the formula

χ∗(µ) = det(Vν(Rj)).

The zeros, taking into account their multiplicities of the characteristic determinant χ∗(µ),
represent the eigenvalues of the adjoint operator B∗.

We also introduce τi(t, µ) for i = 1, 2 solutions of the homogeneous adjoint equation (10)
with heterogeneous conditions

Vj(τs) = δj,s · χ∗(µ), j = 1, 2, (12)

where δj,s is the Kronecker symbol.
Let µ0 be the zero of the characteristic determinant χ(µ) and its multiplicity equals m0.

Then for any s = 1, 2 in the ordered row[
τs(t, µ0),

1

1!

∂

∂µ
τs(t, µ0), . . . ,

1

(mo − 1)!

∂m0−1

∂µm0−1 τs(t, µ0)

]
(13)

the �rst non-zero function represents the eigenfunction of the operator B∗, and the subsequent
members of the row give the chain of associated functions generated by it.

In what follows, the eigenvalues of the operator B∗ will be denoted by µν , ν ≥ 1, and the
corresponding eigenvalues and associated functions by τν(t), ν ≥ 1.

In work [10], the following assertion was proved.

Theorem 1. [10] Let the domain of the operator B be given by non-degenerate boundary
conditions. Then the domain of de�nition of the adjoint operator B∗ is also given by non-
degenerate boundary conditions.

We also need the following assertion [10].

Theorem 2. [10] Let the operator B be generated by non-degenerate boundary conditions.
Then the system of eigenfunctions and associated functions of the operator B is a complete
system in the space L2(0, T ).

Applying Theorems 2.1 and 2.2 to the adjoint operator B∗, we can formulate the assertion.

Theorem 3. Let one of the requirements 1),2),3) be satis�ed. Then the system of eigenfunc-
tions and associated functions of the operator B∗ is complete in the space L2(0, T ).

For further purposes, it is convenient for us to reformulate Lemmas 1.3.1 and 1.3.2, as
well as Corollaries 1 and 2 from the monograph [10] in the following form.
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Lemma 1. [10] For all functions f(t) ∈ L1(0, T ) the following equalities hold:

lim
|ρ|→∞

e−|ImρT |
∫ T

0
f(t) cos ρtdt = lim

|ρ|→∞
e−|ImρT |

∫ T

0
f(t) sin ρtdt = 0. (14)

We denote by R1T (t, λ), R2T (t, λ), (λ = µ) the solution of Equation (11) with the initial
data

R1T (T, λ) = R′
2T (T, λ) = 1,

R′
1T (T, λ) = R2T (T, λ) = 0.

Corollary 1. [10] For all functions f(x) ∈ L1(0, T ) the following equalities hold:

lim
|ρ|→∞

e−|ImρT |
∫ T

0
f(t)R1(t, ρ

2)dt = lim
|ρ|→∞

e−|ImρT |
∫ T

0
f(t)R1T (t, ρ

2)dt = 0.

lim
|ρ|→∞

e−|ImρT |
∫ T

0
f(t)ρR2(t, ρ

2)dt = lim
|ρ|→∞

e−|ImρT |
∫ T

0
f(t)ρR2T (t, ρ

2)dt = 0. (15)

Corollary 2. [10] For all functions f(t) ∈ L1(0, T ) the following equalities hold:

lim
|ρ|→∞

e−|ImρT |
∫ T

0
f(t)τi(t, ρ

2)dt = 0, i = 1, 2. (16)

Lemma 2. [10] If the boundary conditions in the boundary value problem (3)�(4) are non-
degenerate, then there exists a constant C > 0 and a sequence of in�nitely expanding contours
Kn on the ρ�planes on which the following inequalities hold:

|χ∗(ρ2)| > |ρ|−1C e|ImρT |, ρ ∈ Kn. (17)

3 Main result and its proof

In this section, we formulate and prove a criterion for the uniqueness of the solution of the
boundary value problem (1)�(2). In accordance with the notation of Section 1, the boundary
value problem (1)�(2) can be written in the operator form

Bu(t) = Au(t) + f(t), t ∈ (0, T ). (18)

Here, the operator B acts on the variable t and its spectral properties are given in Sec-
tion 1. The operator A is a closed linear operator in a separable Hilbert space H and does
not depend on t.
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12 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

Theorem 4. Let the matrix of boundary coe�cients

J =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
rank 2 is subject to the requirement: at least one of the numbers J42, J14 + J32 and J13 is
di�erent from zero, where Jkj = a1ka2j − a2ka1j and assume that the operator A is a closed
linear operator in a separable Hilbert space H and does not depend on t. Then the homogeneous
operator equation

Bu = Au

has only the trivial solution u ∈ D(B) ∩D(A) if and only if

σ(B) ∩ σ(A) = ∅,

where σ(B) and σ(A) are spectra of the operators B and A, respectively.

Proof. Proof of necessity. Let µn be some eigenvalue of the operator B (with own function
wn(t)) is also an eigenvalue of the operator A. That is, there is an eigenvalue λs of the operator
A, which is the same as the eigenvalue µn of the operator B. Suppose that the eigenvalue λs

of the operator A corresponds to the eigenvalue vs. Then the function u(t) = wn(t) ·vs will be
a non-trivial solution of the homogeneous equation (17). The necessity of the requirements of
Theorem 1 is proved.

Proof of su�ciency. Let none of {µn, n ≥ 1} eigenvalues of the operator B is not an
eigenvalue of the operator A. In other words, if λs is an arbitrary eigenvalue of the operator
A, then χ(λs) ̸= 0.

We show that the solution u(t) of the homogeneous operator equation (18) is identically
equal to zero in the space L2((0, T );H).

To do this, we introduce functions with values in the Hilbert space H for j = 1, 2

Fj(µ) =

∫ T

0
τj(t, µ)u(t)dt. (19)

Functions of the type F1(µ) and F2(µ) were introduced by M.G. Krein in [9] and are called
guiding functionals.

According to the Lagrange formula [11] the functions AFj(µ), for j = 1, 2, can be rewritten
as:

AFj(µ) =

∫ T

0
τj(t, µ) ·Au(t)dt =

∫ T

0
τj(t, µ) ·Bu(t)dt =∫ T

0
u(t)

(
−τ ′′j (t, µ) + q(t)τj(t, µ)

)
dt+ Γ1(u)V4(τj) + Γ2(u)V3(τj)+

Γ3(u)V2(τj) + Γ4(u)V1(τj), (20)

Kazakh Mathematical Journal, 22:3 (2022) 6�20
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where Γ3(·) and Γ4(·) are linear forms [12], complementary linear forms Γ1(·), Γ2(·), up
to a Dirichlet system of order 4. In [12], it is stated that the system of linear forms
{V1(·), V2(·), V3(·), V4(·)} is determined by {Γ1(·), Γ2(·),Γ3(·), Γ4(·)} uniquely and forms a
Dirichlet system of order 4.

Since the Γ1(u) = Γ2(u) = 0, V1(τ2) = V2(τ1) = 0, V1(τ1) = V2(τ2) = χ∗(µ), then relation
(20) takes the form

AFj(µ) = µFj(µ) + Γ5−j(u) · χ∗(µ), j = 1, 2. (21)

If µ0 is an arbitrary zero of multiplicity m0 of the characteristic function χ(µ), then the last
relation (21) implies the equalities

AFj(µ0) = µ0 Fj(µ0),

A
dFj(µ0)

dµ
= µ0

dFj(µ0)

dµ
+ Fj(µ0), (22)

· · ·

A
dm0−1

dµm0−1Fj(µ0) = µ0
dm0−1Fj(µ0)

dµm0−1 +
dm0−2Fj(µ0)

dµm0−2 .

Since µ0∈σ(A), the relations (22) imply the equalities

dsFj(µ0)

dµs ≡ 0 at s = 0, 1, . . . ,m0 − 1. (23)

Then for j = 1, 2 the relations
Fj(µ)

χ∗(µ)
are entire functions of µ, since at the point µ = µ0

the relations
Fj(µ)

χ∗(µ)
have a removable singularity.

Now we pass to the second step of the proof. Since H is a separable Hilbert space, then
there is a counting system of elements v1, v2, . . . , whose linear span is dense in H.

We obtain the dot product of the function Fj(µ) and the element vk and we denote them
by

Gk
j (µ) ≡ ⟨Fj(µ), vk⟩H , j = 1, 2, k = 1, 2, . . . , (24)

where ⟨·, ·⟩H is the dot product in Hilbert space H.

Multiplicity of zeros of the functionalGk
j (µ) not less than multiplicities of zeros of functions

Fj(µ). Therefore, the relationship

Qk
j (µ) ≡

Gk
j (µ)

χ∗(µ)
(25)

de�ne entire functions from µ.

Kazakh Mathematical Journal, 22:3 (2022) 6�20



14 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

Further analysis of the entire functions Qk
j (µ) is based on the technique of estimating the

order of growth and the type of entire functions. Note that the entire function Qk
j (µ) does

not depend on the choice of the fundamental system of solutions of the homogeneous equation
(11).

According to Lemma 2.7, there exists a constant M and a sequence of in�nitely expanding
closed contours Ωn such that ρ ∈ Ωn and

|Qk
j (ρ

2)| ≤ M |ρ| |Gk
j (ρ

2)| e−|Imρ|T

for all admissible index values k and j.
The last estimate and Corollary 2.6 imply the limit equalities

lim
n→∞

max
ρ∈Ωn

|1
ρ
Qk

j (ρ
2)| = 0, j = 1, 2, ∀ ≥ 1.

It follows that the entire functions Qk
j (ρ

2) at ρ → ∞ grow slower than the �rst degree |ρ|.
Then, by the Liouville theorem, we get that

Qk
j (ρ

2) ≡ fk
j , j = 1, 2, ∀k ≥ 1,

where fk
j is some constants.

That's why
Gk

j (µ
2) = fk

j · χ∗(µ), ∀µ ∈ C. (26)

Since

τ1(t, µ) =

∣∣∣∣ R1(t, µ) R2(t, µ)
V2(R1) V2(R2)

∣∣∣∣ , τ2(t, µ) =

∣∣∣∣ V1(R1) V1(R2)
R1(t, µ) R2(t, µ)

∣∣∣∣ ,
then relations (26) take the form{

V2(R2)α
k
1(µ)− V2(R1)α

k
2(µ) = fk

1 χ∗(µ),
−V1(R2)α

k
1(µ)− V1(R1)α

k
2(µ) = fk

2 χ∗(µ),
(27)

where

αk
j (µ) = ⟨

∫ T

0
Rj(t, µ)u(t)dt, vk⟩H , j = 1, 2.

Consequently, from the system (27) we obtain the equality

{V1(R1)V2(R2)− V1(R2)V2(R1)}αk
2(µ) = χ∗(µ) {fk

1 V1(R2) + fk
2 V2(R2)}.

Since
χ∗(µ) = V1(R1)V2(R2)− V1(R2)V2(R1),

Kazakh Mathematical Journal, 22:3 (2022) 6�20
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then
αk
2(µ) = fk

1 V1(R2) + fk
2 V2(R2).

We recall the de�nition (9) of the boundary forms V1 and V2 of the adjoint problem. Then
we have the relation

αk
2(µ) = (fk

1 a∗12 + fk
2 a∗22) + (fk

1 a∗13 + fk
2 a∗23)R2(T, µ)+

(fk
1 a∗14 + fk

2 a∗24)R
′
2(T, µ). (28)

We consider the relation (28) for µ → ±∞. Recall [10] that the asymptotic formulas

R2(T, µ) =
sin

√
µT√
µ

+

∫ T

0
K1(ξ)

sin
√
µξ√
µ

dξ,

R′
2(T, µ) = cos

√
µT +

1

2

∫ T

0
q(ξ)dξ · sin

√
µT√
µ

+

∫ T

0
K2(ξ)

sin
√
µξ√
µ

dξ, (29)

where K1(·) and K1(·) are some integrated functions.
Using Corollary 2.5 and the formulas (29), the relation (28) can be represented in the

following form

δ(
√
µ)√
µ

≡ (fk
1 a∗12 + fk

2 a∗22) + (fk
1 a∗13 + fk

2 a∗23)

(
sin

√
µT√
µ

+
ε1(

√
µT )√
µ

)
+

(fk
1 a∗14 + fk

2 a∗24)
(
cos
√

µT + ε2(
√

µ)
)
, (30)

where the functions δ, ε1 and ε2 tend to zero at µ → ∞.
This is possible if and only if the numbers

(fk
1 a∗12 + fk

2 a∗22), (f
k
1 a∗13 + fk

2 a∗23), (f
k
1 a∗14 + fk

2 a∗24).

are identically equal to zero.
Consequently, from (28) it follows that αk

2(µ) ≡ 0.
From the last equality it follows that

⟨
∫ T

0
R2(t, µ)u(t)dt, vk⟩H = 0, ∀k ≥ 1.

Since the linear span of the system {vk, ∀k ≥ 1} is dense in H, then we obtain the relation∫ T

0
R2(t, µ)u(t)dt = 0, ∀µ ∈ C.

The required equality follows from the last relation

u(t) = 0, ∀t ∈ (0, T ).

In order to verify this, it is necessary to repeat the arguments from ([10], page 42). Thus,
Theorem 3.1 is proved.

Kazakh Mathematical Journal, 22:3 (2022) 6�20



16 Baltabek E. Kanguzhin, Bakytbek D. Koshanov

We give the following examples as applied to Theorem 3.1 for some operators A in equa-
tions (1).

Example 1. Let Ω ⊆ RN be some bounded area with a smooth boundary ∂Ω. In work [23] op-
erator A is de�ned as A(x,D) =

∑
|α|≤2l

aα(x)D
α, which is a formally self-adjoint elliptic di�er-

ential operator of order 2l with su�ciently smooth coe�cients aα(x), where α = (α1, . . . , αN )
is a multi-index and D = (D1, . . . , DN ), Dj =

∂
∂xj

.

The domain of the operator A is given by the following boundary conditions in x:

Bju(x, t) =
∑

|α|⩽mj

bα,j(x)D
αu(x, t) = 0, 0 ≤ mj ≤ 2l − 1, j = 1, 2, . . . , l, x ∈ ∂Ω. (31)

where the coe�cients bα,j(x) are su�ciently smooth given functions. The following conclusion
follows from Theorem 3.1.

Conclusion 1. Let the operator B satisfy the requirements of Theorem 3.1. Then the homo-
geneous operator equation

−∂2u

∂t2
+ q(t)u = Au, x ∈ Ω, t ∈ (0, T ) (32)

with initial-boundary conditions (2) and (31) has only a trivial solution u ∈ D(B) ∩D(A) if
and only if

σ(B) ∩ σ(A) = ∅,

where σ(B) and σ(A) are spectra of the operators B and A, respectively.

This strengthens the main result of [23], since Conclusion 3.3 is valid for the operator B
with non-degenerate boundary conditions. At the same time, in [23], the operator B was
required to have the boundary conditions be strongly regular in the sense of Birkho� [11].
The class of non-degenerate boundary conditions is wider than the class of strongly Birkho�-
regular boundary conditions.

Example 2. The operator A is generated by the standard wave equation Av(·) = vxx(·)−vyy(·)
in the two-dimensional region Ω bounded by the segment OB : 0 ≤ x ≤ 1 axes y = 0 and
characteristics OC : x+ y = 0, BC : x− y = 1.

The domain of the operator A is given by the following boundary conditions with a shift
along (x, y):

u(θ, 0; t) = 0, 0 ≤ θ ≤ 1,

u

(
θ

2
, −θ

2
; t

)
= a u

(
θ + 1

2
,
θ − 1

2
; t

)
, 0 ≤ θ ≤ 1

2
, 0 < t < T. (33)

The following conclusion follows from Theorem 3.1.
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Conclusion 2. Let the conditions of Theorem 3.1 be satis�ed for the operator B. Then the
following homogeneous operator equation

−∂2u

∂t2
+ q(t)u = uxx(x, y; t)− uyy(x, y; t), x ∈ Ω, t ∈ (0, T ) (34)

with initial-boundary conditions (2) and (33) has only a trivial solution u ∈ D(B) ∩D(A) if
and only if the spectra of these operators B and A do not intersect.

This strengthens the main result of the work [24].

Example 3. The operator A is generated by the Tricomi equation. Let Ω ∈ R2 be a �nite
domain bounded for y > 0 by the Lyapunov curve σ, ending in a neighborhood of points
O(0, 0) and B(1, 0) small arcs of the �normal curve� σ0, and for y < 0 by the characteristics
OC : x− 2

3(−y)3/2 = 0, BC : x+ 2
3(−y)3/2 = 1 equations

Av(·) = yvxx(·) + vyy(·).

The boundary conditions for the Tricomi operator are given by the Dirichlet condition on the
elliptic part and the fractional derivative traces of the solution along the characteristics:

u(x, y; t)
∣∣
σ0

= 0, σ0 :

(
x− 1

2

)2

+
4

9
y3 =

1

4
, (35)

x5/6D
1/6
0+

(
u (χ0(x))x

−2/3
)
+ (1− x)5/6D

1/6
1−

(
u (χ1(x)) (1− x)−2/3

)
= 0, (36)

where

u (χ0(x)) = u

(
x, −

[
3x

2

]2/3)
, 0 ≤ x ≤ 1

2
,

u (χ1(x)) = u

(
x, −

[
3(1− x)

2

]2/3)
,

1

2
≤ x ≤ 1.

Application of Theorem 3.1 leads to the following conclusion.

Conclusion 3. Let the conditions of Theorem 3.1 be satis�ed for the operator B. Then the
following homogeneous operator equation

−∂2u

∂t2
+ q(t)u = yuxx(x, y; t) + uyy(x, y; t), x ∈ Ω, t ∈ (0, T ) (37)

with the initial-boundary conditions (2), (34), and (35) has only a trivial solution u ∈ D(B)∩
D(A) if and only if the spectra of these operators B and A do not intersect.
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This strengthens the main result of the work [25].
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�àí¡îæèí Á. Å., �îøàíîâ Á. Ä. ÊÅÉÁIÐ ÄÈÔÔÅÐÅÍÖÈÀËÄÛ-ÎÏÅÐÀÒÎÐËÛ�
ÒÅ�ÄÅÓ �ØIÍ ØÅØIÌIÍI� ÁIÐÅÃÅÉËIÊ ÊÐÈÒÅÐÈÉI.

Á´ë ìà©àëàäà åêi êîììóòàöèÿëàíàòûí A æºíå B îïåðàòîðëàðäû­ àéûðûìû ò³ðiíäå
áåðiëãåí øåêàðàëû© åñåïêå ñºéêåñ êåëåòií ñèììåòðèÿëû L îïåðàòîðû ©àðàñòûðûëàäû.
Åãåð A îïåðàòîðûíû­ ñïåêòði B îïåðàòîðûíû­ ñïåêòðiìåí ©èûëûñïàéòûí áîëñà æºíå B
îïåðàòîðûíû­ àíû©òàëó îáëûñû àç¡ûíäàëìà¡àí øåêàðàëû© øàðòòàðìåí áåðiëñå, îíäà
Lu = (B − A)u = 0 îïåðàòîðëû© òå­äåó øåøiìiíi­ áiðåãåéëiãiíå êåïiëäiê áåðiëåäi. Á´ë
æ´ìûñòà ò´æûðûìäàë¡àí øåêàðàëû© åñåïòi­ áiðåãåéëiê êðèòåðèéi ©îëäàíûñòà¡û å­-
áåêòåðäi­ íºòèæåëåðiíåí àéûðìàøûëû¡û B îïåðàòîðûíû­ ò³áiðëiê ôóíêöèÿëàð æ³éåñi
ñºéêåñ êå­iñòiêòå áàçèñ ©´ðìà¡àí êåçäå äå ©àíà¡àòòàíäûðûëàäû. Á´ë ðåòòå A ñûçû©òû
îïåðàòîðûíû­ ò´éû©òû¡û ¡àíà ©àæåò.

Ò³éií ñ°çäåð: ñèììåòðèÿëû îïåðàòîðëàð, Øòóðì�Ëèóâèëë òå­äåói, àç¡ûíäàëìà¡àí
øåêàðàëû© øàðòòàð, øåøiìíi­ áiðåãåéëiãi, îïåðàòîðäû­ ìåíøiêòi ìºíäåði, òîëû© îðòî-
ãîíàëüäû æ³éåëåð, îïåðàòîðäû­ ñïåêòði.

Êàíãóæèí Á. Å., Êîøàíîâ Á. Ä. ÊÐÈÒÅÐÈÉ ÅÄÈÍÑÒÂÅÍÍÎÑÒÈ ÐÅØÅÍÈß ÎÄ-
ÍÎÃÎ ÄÈÔÔÅÐÅÍÖÈÀËÜÍÎ-ÎÏÅÐÀÒÎÐÍÎÃÎ ÓÐÀÂÍÅÍÈß

Â äàííîé ñòàòüå ñèììåòðè÷íûé îïåðàòîð L, ñîîòâåòñòâóþùèé êðàåâîé çàäà÷å, ïðåä-
ñòàâëÿåòñÿ â âèäå ðàçíîñòè äâóõ êîììóòèðóþùèõ îïåðàòîðîâ A è B. Åäèíñòâåííîñòü
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ðåøåíèÿ îïåðàòîðíîãî óðàâíåíèÿ Lu = (B − A)u = 0 ãàðàíòèðóåòñÿ, åñëè ñïåêòðû îïå-
ðàòîðîâ A è B íå ïåðåñåêàþòñÿ è îáëàñòü îïðåäåëåíèÿ îïåðàòîðà B çàäàíà íåâûðîæ-
äåííûìè ãðàíè÷íûìè óñëîâèÿìè. Â îòëè÷èå îò ñóùåñòâóþùèõ ðåçóëüòàòîâ ðàáîò, ñôîð-
ìóëèðîâàííûé â äàííîé ñòàòüå êðèòåðèé åäèíñòâåííîñòè êðàåâîé çàäà÷è âûïîëíÿåòñÿ
äàæå â òîì ñëó÷àå, êîãäà ñèñòåìà êîðíåâûõ ôóíêöèé îïåðàòîðà B íå îáðàçóåò áàçè-
ñà â ñîîòâåòñòâóþùåì ïðîñòðàíñòâå. Ïðè ýòîì òðåáóåòñÿ ëèøü çàìêíóòîñòü ëèíåéíîãî
îïåðàòîðà A.

Êëþ÷åâûå ñëîâà: ñèììåòðè÷íûå îïåðàòîðû, óðàâíåíèå Øòóðìà�Ëèóâèëëÿ, íåâû-
ðîæäåííûå ãðàíè÷íûå óñëîâèÿ, åäèíñòâåííîñòü ðåøåíèÿ, ñîáñòâåííûå çíà÷åíèÿ îïåðà-
òîðà, ïîëíûå îðòîãîíàëüíûå ñèñòåìû, ñïåêòð îïåðàòîðà.
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