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Abstract. In this work, we study a Dirichlet problem for the viscous Burgers equation in a domain with
moving boundaries that degenerates at the initial moment. The primary method of investigation is the
Galerkin method, for which we construct an orthonormal basis suitable for domains with moving bound-
aries. Uniform a priori estimates are obtained, and based on these, theorems on the unique solvability
of the problem are proven using methods of functional analysis. The viscous Burgers equation serves as
a simplified model for studying fundamental aspects of nonlinear systems. It bridges the gap between
purely theoretical nonlinear equations (like the inviscid Burgers equation) and more complex systems

like the Navier-Stokes equations, making it a valuable tool in mathematical and physical research.
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1 Introduction

Let Q = {z,t| p1(t) < & < ¢a(t), 0 <t < T < oo} be a domain that degenerates into
a point. The functions ¢1(t) and @a(t) are defined on [0,7] and are strictly monotonically
decreasing and increasing functions, respectively, which belong to C1(0, T') with ¢1(0) = 2(0)
and Q; = (p1(t), pa2(t)) for t € (0, 7).

The study of solvability issues for initial-boundary value problems in domains with moving
boundaries, namely, in domains whose boundaries change over time, has been the focus of
numerous works; we note only a few of them [1, 2, 3, 4, 5]. In these works, we observed
that the lack of a suitable basis applicable to such domains necessitates transforming these
domains into ones with stationary boundaries. This transformation leads to the need to
study several auxiliary problems, significantly complicating the research process. Previously,
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Figure 1: The degenerating domain (2.

in work [6], we constructed an orthonormal basis and demonstrated its application to solving
initial-boundary value problems in degenerate domains.

In this paper, in the domain ) we are studying the solvability issues of the following
boundary value problem for viscous Burgers equation:

Ovula,t) + u(z, t)dpu(w, t) — vdZu(z,t) + dpu(x,t) = f(z,1), (,1) € Q, (1)
with homogeneous boundary conditions

u(pr(t), 1) = u(pa(t),t) = 0, t € (0,T). (2)

We look for some conditions for functions ¢1(t) and 2(t) such that the problem (1)—(2)
admits a unique solution. So, to establish the unique solvability of the problem (1)—(2) we
suppose that

|/ (t)| < v forall t € [0,T], p(t) = pa(t) — p1(t), ¥ = const > 0. (3)
Here is our main result on the problem(1)—(2):

Theorem 1. Let f(x,t) € L*(Q) and conditions (3) be satisfied. Then boundary value problem
(1)~(2) has a unique solution

u e Hy'(Q) = {L(0,T; H3 () N H'(0,T; L*()) } -
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In work [7], the homogeneous version of problem (1)-(2) was previously studied in a non-
degenerate domain, where theoretical and numerical results were obtained by the authors. In
works [8, 9], the authors investigated the existence of solutions to boundary value problems
for the Burgers equation in both degenerate and non-degenerate domains.

The paper is divided as follows: Section 2 investigates one auxiliary initial boundary value
problem for the Burgers equation in the non-degenerate domain, where ¢1(1/n) # p2(1/n).
In Section 3, we obtain the necessary a priori estimates. In Section 4, we solve one spectral
problem and construct the necessary orthonormal basis, then, based on the obtained basis,
we introduce an approximate solution. In this section, we also prove the solvability of the
Cauchy problem for the coefficients of the approximate solution. The unique solvability of the
auxiliary problem is given in Section 5. Section 6 is devoted to the proof of the main result.
A brief conclusion completes the work.

2 Statement of auxiliary problem

We introduce the family of domains Q" = {z,t| ¢1(t) < = < @a(t), 1/n < t < T}, n € N¥,
ne€ N ={n € Nn>ny,1/ny < T} These domains Q" are “curvilinear” trapezoids for
which ¢1(1/n) # ¢2(1/n) holds and now the domains do not degenerate at the point ¢t = 1/n.
We aslo note that between the initial domain {2 and domains Q2" there are strict embeddings
Qr c Qv c ... c Q and, obviously, that nh_)rgo O =Q.

In the domains Q", we will consider the following initial boundary value problems for the
Burgers equation with respect to the functions uy,(z,t):

O (2, 1) 4 U (T, 1) Optin (2, 1) — V0P (2, 1) + Opin (2, 1) = frlz, 1), 4)
with homogeneous boundary
un(@l(t)ﬂf) = un(@?(t)vt) =0, te (1/77,,T), (5)
and initial conditions
un(,1/n) =0, x € Qs = (p1(1/n), p2(1/n)) . (6)
Obviously, if f(z,t) € L3(), then f,(x,t) € L?(Q"), where f,(z,t) is the restriction of
function f(x,t) € L?() to domains Q™.
For the problem (4)-(6) we have the following

Theorem 2. For every fired n € N* the initial-boundary value problem (4)—(6) is uniquely
solvable in the space up(z,t) € Hg’l(Q”).
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3 A priori estimates

Lemma 3. There is a positive, independent of n, constants Ky, Ko and K3, such that for all
t € [1/n,T) we have estimates

t
lan (@, )13y + / 10wt (0,7 220y A7 < K| fnl, )13 g (7)
1/n
t
1/n
|Betn 1) 32y < Kl Fl, )32 )

Proof. We start with the proof of the first a priori estimate. Multiplying the equation (4) by
the function u,(z,t) scalarly in L?(€;) and using the e-Cauchy inequlity we get

d
EHUTL(%QH%%QQ + 2V||8mun(x,t)H%2(Qt) < an(xat)H%?(Qt) + ”Un(ﬂfat)H%%Qt)- (10)

By applying the Gronwall inequality to (10), we obtain the estimate (7).
Let us proceed to the proof of the second a priori estimate. Multiplying the equation (4)
by —02uy,(x,t) scalarly in L?($);) we get
J w2(t)
allazun(%‘, t)H%Z(Qt) + 2V||6§Un(x7t)H%2(Qt) = 2‘ / un(:U,t)@xun(x,t)agun(x,t)dx

w1(t)

w2(t) p2(1)
+2' / fn (2, )02y, (2, t)dx —1—2‘ Opu(z, t)0u(z, t)d

e1(t) e1(t)
+ (|0zun(p2(2),1)]” + [0wun(01(2), 1)) - (11)

To estimate the nonlinear term in the right-hand side of (11) we use the following in-
equality ([10], Theorems 5.8-5.9, p.140-141)

1B (2, D) (0 < Kl|Oatin (@, 1)1 17 0, | Oatin (2, )| gy 0 7 Dt () € HH(S),

Young’s inequality (r=!+s7!1 =1):

V © ©
— 1/r 1/s Y < 2 r s
V| ‘(@ U) (@ ®>‘ < U+ 5 VI,
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with © =v/6, r =4/3, s =4,

3/2 1/2
U = [0un(z, )l 0+ V = K (@, D) sy 10w (@, 1) 50,

After which we will get

p2(t)
2 Vg2 2
’/un(x,t)axun(a:,t)ﬁzun(x,t)dac ggHaxun(m,t)HLg(Qt)
p1(t)
v 54
O e A RO A ER e (12

For the remaining terms in (11) we have

w2(1)

v 2
’ / Fa(@, )0Fun (2, t)dz| < §H8§un(a:,t)|]%2(9t) +;”fn(33=t)||%2(gt)a (13)
e1(t)

w2(t)

/ dpu(z, t)0%u(z, t)dx
e1(t)

2 v
< > [0utun, )y + 2102w ey, (14)

YOztn (0i(t), ) < V0xtin (@, )| () < E*V0xttn (@, )| 110) | O0tin (2, 1) | 20

= K*y|10zun(z,t)l|2(0y) [[100un (2, t)ll12(6) + 107un(2, 1)l 2(0))]

v K4’}/2 )
< S Oy + K2+ S5 Mo Ol =12 (19

Based on inequalities (11)-(15) we obtain:

10w (2, )3y + V1020 (2, 0122y < Crllfala )32 + Call ot D235, (16)

2 2714
where C = %’ Co="Y + 4 44 108K ot 4 K l,_i;g,y K

, since

Jun(z, )| La(a,) < 1/m<%§T VeO)lun(z,t)]| Lo,y < Callun (2, )| 10,y < Cs,

where

Cy= max /p(t)Cs.

1/n<t<T
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From inequality (16) similarly as in the proof of the first a priori estimate we obtain the
required estimate (8).
Now, let us proceed to the proof of the final a priori estimate. From equation (4) we have

19t (2, )| 2y < VI1ORum (1) |2y + 1 Dl 2

HlOzun (@, )l 2(m) + llun (@, ) 0zun (@, 1) || L2(0m).- (17)

According to (8) we need to estimate the last term in (17) only. Using the embedding
H () — L>®(£) and estimates (7) and (8) we have

T
||un(xat)a:vun(%t)n?:?mn) < Cs / ”un(wat)”?{l(Qt)Hawun(%t)”i%ﬂt)dt
1/n
< Céllun (@, )| Foo (1111 () |02t (25 ) |72 gry < Crll frnl, D)l[720pmy (18)

where C7 = K1 K9CgT, and K, Ko are the constants from (7) and (8).
Based on inequalities (17)-(18) we establish the estimate (9). This completes the proof
of Lemma 3. ]

4 Spectral problem and approximate solution

4.1 Spectral problem

To apply the Faedo-Galerkin approach, it is necessary to resolve the corresponding spectral
problem

—2Yy(z,t) = Mo (t)Yi(z,t), (z,1) € Q", k € Ny, (19)
Yi(e1(t),t) = Yi(p2(t), 1) = 0. (20)
The solution to this problem is sought in the form
Yi(z,t) = Ag(t) cos (A (t)z) + By (t) sin (Ag(t)x) . (21)
Using the conditions (20) from (21) we get:

{ Ap(t) cos (Ar(t)e1(t)) + B(t) sin (Ar(t)e1(2)) = 0, (22)
Ap(t) cos (Ar(t)g2(t)) + Bp(t) sin (A (t)g2(t)) = 0.

For the system (22) to admit a nontrivial solution, the following condition must hold:

cos (Ar(t)e1(t))  sin (Ax(t)pa(t))

sin (Ms()pa(t))  cos k()ga())]
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From where we obtain

sin (A (t)p(t)) =0, k € Ny,

hence
k
)\k(t) = m, k € Np.
From (22) we also obtain .
= ety
Substituting (24) into (21) and choosing
Bu(t) = V2 cos )\k(t)npl(t)’
p(t)

o Yi(z,t) = V2 sin (AR (t)(x — @1(t))), Ai(t) = <7Tk>2 keN

ka—mk lek—(p(t)a 0

4.2 Approximate solution

The following approximate solution

N N
:ch(t)Yj(x,t) (z,1/n) :Zc] 1/n)Yj(xz,1/n) =0,

is introduced and utilized to solve the problem (4)—(6):

p2(t)

/ [&gunN(x, t)dx + unN(x, t)@xunN(x, t) — V@iug(l’, t) + 3xunN(x, t)] Yi(z, t)dx

p1(t)
P2(t)
_ / Fol, )Y (2, 1) da,
e1(t)
uN(x,1/n) =0, z € Q1 /s
forallk=1,...,Nand t € [1/n,T].

Lemma 4. The problem (27)-(28) has a unique solution C(t) = {cj(t)}évzl.

(25)

(26)

(27)

(28)
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Proof. Given that the system of functions {Y(x,t)}ren, forms an orthonormal basis in L?($;)
for Ng ={0,1,2,...}, it follows that for any finite N:

p2(t) p2(t)

/ atujy(x,t)yk(x,t)d;p:ZN:C;(t) / Y, (s t) Vi (a, £)da
©1(t) =1 e1(t)
N pa(t)
#3060 [ Vi@ 0¥ e = &0 + S (e 1),
j=1

where for all k=1,... N
S1(t)ej(t) = (L(t) + L2(t) + I3(t)) ¢ (D),

w2(t)

7t v . ,
B0 =~ 55 Y eit) [ syl =~ o1()sin (ub)(e - p1(6)) do.
7=l e1(t)
, N
Bt 0 = (S (FU80 - w0) ) L
j=1
w2(t)

cos (A (t)(z = @1(t))) sin (Mg (8) (z — @1 (1)) dz,

e1(t)
27/ (1) N | 2(t) ‘
I3(t)cj(t) = — Iy > je;(t) / zcos (\j(t)(z — @1(1))) sin (A (1) (x — p1(2))) d.
7=l P1(t)

N
From (19) we have 02uY (z,t) = — 3 )\?(t)cj(t)Yj(x,t). Then, for all t € [1/n, T1,
j=1

w2(t) N w2(t)
- / 024 (2, )i, )z = S A2 (1)e (1) / Y, (2, ) Yi(a, t)dz = A(t)e; (8).
"0 = 0
For the nonlinear term we have
©2(t)
/ ul (z, 1) 0pul (2, )Yy (2, t)dx
©1(t)
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e2(t) N
/ ch VYi(z,t) Z em(t (z,8)Yi(z, t)dx = Sa(t)cpm(t).
»1(t) =1 m=l

For the last term we have

w2(t) N w2(t)
/ Ol (2, )Yy (2, t)d ch / Yj(x,t)Yi(z, t)de = S3(t)c;(t)
1(t) =1

® w1(t)

For j € N, the problem (27)-(28) can be reformulated as the following Cauchy problem for a
finite system of nonlinear ordinary differential equations:

cj(t) = (=S1(t) = vAT(t) = S3(1)) ¢;(t) = Sa()eum(t) + g5(1), ¢j(1/n) =0, (29)
where
pa(t)
50)= [ Sl 0o 0ds, jEN,
e1(t)
Since f(z,t) € L?(Q), it follows that gi(t) is a square-integrable function, and function
S (t) is well defined. Consequently, the Cauchy problem (29) has a unique solution on some
interval [1/n,T’], where T" < T. Moreover, due to the a priori estimates provided in Lemma
3 in Section 3, the solution C(t) can be extended up to the finite time T.
Thus, for any fixed finite N, the functions C(t) = {c¢;(t ) ", are determined as the

solution to the Cauchy problem (29). Along with these, the unlque approximate solution
ul (z,t) to problem (27)—(28) is obtained. This concludes the proof of Lemma 4. O

5 Solvatility of auxiliary problem

5.1 Proof of Theorem 2. Existence

By virtue of Lemma 3 we can extract weakly convergent subsequences from bounded sequences
{ul(z,t), Opul (z,t) N =1,2,...}:

ulN (z,t) = up(x,t) weakly in L?(1/n,T; H3(Q4)) N H(1/n, T; L* (%)), (30)

ulN (x,t) = u,(x,t) strongly in L?(1/n, T; L*(€%)) and a.e. in Q™. (31)

We introduce the new function w;(z,t) = ¢(t)Yj(x,t), where Yj(x,t) € HZ(Q:) and
Y(t) € CY([1/n,T)). Next, we multiply the identity (27) by () € C1([1/n,T]) and after
that we integrate the resulting expression with respect to t over the interval [1/n,T] for
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j=1,...,N and use the fact that the set of all linear combinations of {w;(z,t)} is dense in
L*(1/n,T; H3(Q)). Thus, we obtain:

T ¢2()
/ / [&tuflv(a:, t) +ul (z,t)0pul (z,t) — vO2ul (x,t) + Opul (x,t) — f(x, t)|w(z, t)dzdt = 0,
1/n @1 (t)
Vw(z,t) € L*(1/n, T; HE (). (32)

In the identity (32) we take the limit as N — oo. For the linear terms in equation (4), the
passage to the limit is performed using the relations (30) and (31). Regarding the nonlinear
term, as N — oo we arrive at the following result:

T 2(t)
/ [l (z,t) — up (z,1)]0pul (2, )w(zx, t) de dt
1/n @1 (t)
T p2(t) T w2(t)
+/ / U (2, 8)Opul (z, t)w(z, t) dz dt — / / Up (2, ) Opup (z, )w(x, t) dedt,  (33)
1/n @1 (t) 1/n ¢1(t)

since according to (30)—(31) there exists a limiting relationship

T e2(t)
/ / 0 (2, 8) — (@, )00 (2, Oy w(, ) da dt — 0.
n i)

Thus, by passing to the limit as N — oo in the identity (32), and taking into account the
limiting relation (33) along with the initial condition (28), we obtain:

T ¢2(b)
/ / [Oyun (2,t) + up (2, ) ptun (2, t) — V02U (2, ) + Opun(z,t) — f(z,t)] w(z, t)dzdt =0,
1/ne1(t)
Vw(z,t) € L*(1/n, T; H (), (34)
#2(1/n)
un(z,1/n)f(x)de =0, VO(x) € Lz(Ql/n). (35)
¢1(1/n)

Thus, from (34)-(35), it follows that the limiting function u,(x,t) satisfies equation (4)
along with the boundary and initial conditions (5)—(6).
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5.2 Proof of Theorem 2. Uniqueness

We suppose that the initial boundary value problem (4)—(6) has two distinct solutions, denoted
by u(l)(x,t) and ug) (z,t). Then, their difference, given by wu,(x,t) = ugll)(:r,t) - ug)(:c,t),

n

fulfills the following problem:

atun(l'a t) + un(l'a t)axugzl)(aTv t) + ug) (l’, t)azun(l'a t) - Va;%un(l'a t) + aﬂcun(‘rv t) =0, (36)

un(01(t),t) = un(p2(t),t) =0, t € (1/n,T), (37)
up(z,1/n) =0, € Qy/py. (38)
By Lemma 3, it follows that

uP(2,t) € L°(1/n, T; H' () N LA(1/n, T; HE (), k= 1,2. (39)

Consider equality

5 7 [un (@ O)llz2iq + v 10wun(z, )10, =
w2(t)

- / [un(x, H)Dpul (2, tyun (@, 1) + ul?) (2, ) Optin (, t)un (z, 1) | dr, (40)

e1(t)
derived by taking the scalar product of equation (36) with the function w,(z,t) in the space

L2(S).
From (39), we derive an estimate for the right-hand side of (40):

wa(t)
[lun(, ) POsull) (@, ) + uf?) (2, )stun (@, un(2, )| do

= / [—QU}L(m,t)un(x,t)axun(m,t)+ug)(aﬁ,t)(?xun(a:,t)un(x,t)} dx

1 2
<o [2!!u;1>(x,t)HLoo(l/n,T;mt» + [u® (2, )| o1 /n,T;(Qt))} (2, 8) 320,

v v
+§H3xun($at)H%2(Qt) = CSHUn(fE,t)H%Q(Qt) + 5\\3xun(x,t)|!i2(gt)7 (41)

where ) )
G =5 [2”ug)($,t)HLOO(l/n,T;(Qt)) + [|ul (2, t)HL‘X’(l/n,T;(Qz))}
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Using relation (40), we deduce:
d 2 2 2
2 lun (@ Oz, + v [10zun(z, )72, < Collulz, )12,y V€ @X/nT],  (42)
where Cg = 2Cg. From (42), by applying Gronwall’s inequality, we obtain:

”un(wat)H%;(Qt) = 0, Vte (1/7’L,T]

This implies that ne (x,t) = u'? (x,t) in L?(Q"), meaning the solution to the initial boundary

value problem (4)—(6) is unique. Hence, the uniqueness has been established, and Theorem 2
is proven.

6 Proof of the main result

6.1 Proof of Theorem1l. Existence

In the boundary value problems (4)-(6), we extend each element of the sequence {uy(z,?) :
(xz,t) € Q" n € N*} by zero to the entire domain Q. As a result, we obtain a bounded

P

sequence of functions {un(a:,t), n e N*} , from which a convergent subsequence can be ex-

tracted (retaining n as the index for this subsequence), i.e.

Up(x,t) = u(z,t) weakly in HS’I(Q), (43)

Un(x,t) = u(x,t) strongly in L%(Q). (44)

Then, based on (43)—(44), we can pass to the limit as n — oo in the following integral
identity for all ¥(x,t) € L*(Q)

/ [Gtun(x, t) 4 un (2, 1) Optin (1) — vOPupn (2, 1) 4+ Opun(z,t) — folz, t)} Y(x,t)dx dt —
Q

— / [0wu(z,t) + u(,t)0pu(z, t) — vOru(z,t) + pu(z,t) — f(2,t)] (2, t) dedt =0, (45)
Q

and u,(z,1/n) — 0, as n — oo. Thus, it has been shown that the boundary value problem
(1)—(2) possesses a solution u(zx,t) € Hg’l(Q), as defined by the integral identity (45). This
proves the existence of a solution, thereby confirming Theorem 1.
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6.2 Proof of Theorem 1. Uniqueness

has two distinct solutions, denoted u) (z, t)

Suppose that the boundary value problem (1)—(2)
= uM(z,t) — u®(z,t) will fulfill the following

and u®(x,t). Then, their difference u(z,t)
problem:

du(z,t) + u(z, )0puV (z, ) + u® (2, 0)dpu(z, t) — v&?u(z, t) + pu(z, t) =0, (46)
u(cpl (t))t) = U(QOQ(t)’ t) =0, te (OvT)' (47)

By similar reasoning as in Lemma 3, the following inequality can be established:
1™ (2, )| L0 31 00)) < M = Kallf (2,0l 2(0), k= 1,2. (48)

Consider the equality

1d
5 llul@, 720, + v 10su(a, )72, =

2di
@2(t)

- / []u(x,t)\anu(l)(x,t)+u(Q)(x,t)axu(x,t)u(x,t)] dz, (49)
e1(t)

which is obtained by multiplying the equation (46) by function u(z,t) scalarly in L?(£2;).
From (48), we obtain an estimate for the right side of (49)

p2(t)
/ [[u(er ) P0,u) . 2) + u® (2, )0, Hyu, 1)) do
e1(t)
v
< Cioflu(z, t)||%2(nt) + §||axu(x,t)|liz(9t), (50)
where A2
1 2.9
5 |:2Hu(1) (x7t>HL°°(O,T; (Qt)) + Hu(2) (xvt)HLoo(QT;(Qt)) S 21/ = 0107
and M is the constant from (48).
Based on relations (49)—(50) we obtain
d
EHU(JUJ)H%%QQ + v 0pu(, 1)||72(0,) < Crillu(@, )72y, Yt € (0,T], (51)

where C1; = 2C1p. From (51), applying the Gronwall inequality, we obtain that
lu(z, )72,y =0, Ve (0,T).

This implies that u(V(z,t) = u® (z,t) in L?(Q), i.e. solution to the boundary value prob-
lem (1)-(2) is unique. Thus, we have proved the main result of the work, namely, Theorem 1.
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7 Conclusion

In this work, we studied a Dirichlet problem for the Burgers equation in a domain with moving
boundaries that degenerates at the initial moment. An orthonormal basis suitable for domains
with moving boundaries was constructed. Uniform a priori estimates were obtained, based
on which theorems on the unique solvability of the considered problem were proven using
methods of functional analysis.
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Capwibait T.A., Epramues M.Y., Kakceibait bl.LK. TYTKbBIP BIOPTEPC TEHJIEYI
YIIIH KOMBIJIFAH JUPUXJIE ECEBIHIH HIEIIIM/ILIITT TYPAJIBI

Kywmpicta 6i3 yakbITTBIH 0ACTANKBl ME3ETIHIE KOUBLIMAJIBI XKOHE IEKAPAIAPHI KO3FaI-
MaJjel obsibicTa broprepe Tengeyi yimia xofteuiran Jlupuxiie ecebin 3eprreiiMis. 3epTTeyiiH
merisri oaici — Tapexkwn omici bomranapkTaH, 613 MeKapa apbl KO3raaMasbl 0b6JBICTAD YIiH
KOJIJaHyFa OOJATHLIH OPTOHOPMAJAHFAH 0a3UC KYpPbLIaAbl. BIpKaILIITEI ampuop/bl Harasia-
yJIap aJBIHBIT, OJaP/IbIH HETi3iHAe KapaCTLIPLLIBIIT OTHIPFAH €CenTiH OIpMOHI ImermiMimiir
TypaJibl Teopemasap (pyHKIIMOHAJIBIK TaLIay 9aicTepl KoMerimen jaJgesnaesi. TyTkbip Byp-
repc TeHJIeyl CBI3BIKTBI eMeC XKylesiepiH 1prei acrneKTiIepiH 3epTTey VIIH KeH1IIeTLImeH
yiri petiage Kpr3mer erei. O Ta3a TEOPUSIIBIK CBI3BIKTBI €MeC TeHeyaep (MbICAJIbl, GYPBIC
Byprepc rengeyi) men Hasbe-CToke TeH/ey1€pl CUSKTBI Kyp/e/l xKyHesep apachiHaarbl aJi-
MAKTHIKTHI 2KOATBI, OYJT OHBI MATEMaTUKAJIBIK, YKOHE (DUBUKAJIBIK, 3€PTTEYAepAe KYHIbI KypaJ
eTesl.

Tyiiiu ce3saep: Broprepc Terseyi, anpuopibl baraiayiap, LamepkuH 9mic.

Capuwibaiit T.A., Epragues M.T., 2Kaxkceibait bl.K. O PASPEIIINMOCTU 3AJTAYN JIU-
PUXJIE JIJId BA3KOI'O YPABHEHU A BIOPTEPCA

B pabore mamu uccienyercs ogua 3amada lupuxsie qig ypasuenus: broprepca B 001acTu
C MOABUKHBIMU TPAHUIIAMHK, KOTOPas BLIPOKIAETCS B HAYAJIBHBIN MOMEHT BpeMenu. (OCHOB-
HBIM METOJIOM HWCCJIENOBAHUA SBJsIeTCa MeTon l'amepkuHa, [ TPUMEHEeHNsT KOTOPOTO HAMM
B paboTe CTPOUTCS OPTOHOPMHPOBAHHBIN 6a3MC, IPUMEHHMBIH g 00JacTeil ¢ MOJBUZKHBI-
MU I'DaHUAIIAMH. HOJTyLIeHbI PaBHOMEPHbIEC allPUOPHBIC OOCHKMW Hd OCHOBE KOTOPBIX METOddaMMN
GYHKITMOHAJIHHOTO aHAIN3a JOKA3AHLI TEOPEMbl OJHO3HATHON Pa3pelnMOCTH PacCMaTPUBaA-
eMoil 3amaun. Bsi3koe ypaBHenme Brooprepca CIy:KHT YIOPOINEHHONH MOIEIBIO IJIsT M3YIEHNS
dyHIaMEHTAJIBHBIX ACMEKTOB HEJIMHEHHBIX cucTeM. OHO 3amo/iHsaeT Tpobes MeX Iy 9hCTO Teo-
pPETUYECKUMH HeJUHEHHBIMI yDaBHEHUSIME (TaKUMU KaK HEBsI3Koe ypaBHeHue Broprepca) u
BoJ1ee CIOKHBIMY CUCTEMAaMHI, TAKMME Kak ypaBHenus Hasbe-CToKca, 9TO 1e1aeT ero meHHbIM
MHCTPYMEHTOM B MaTEMaTHIECKUX M (DUBNIECKHX HUCCICTOBAHMIX.

Kuarouesbie cioBa: ypasuenne Bioprepca, anpuopubie orenku, meros [aieprkuHa.
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