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Abstract. In this paper, we study uniform convexity and uniform smoothness properties of ¢?-spaces

associated with the unitary dual of a compact group based on the Hilbert-Schmidt ideal.
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1 Introduction

In |2], Clarkson introduced the notion of uniformly convex Banach space. Namely, a Banach
space X is said to be uniformly convex if for each 0 < € < 2 there exists 6(¢) > 0 such that

r+y

H§1—&@

whenever
lzll =yl =1, [lz—yl=c¢.

In geometrical terms the above definition can be reformulated in the following way: the
mid-point of an arbitrary chord of the unit sphere of the space cannot approach to the surface
of that sphere unless the length of the chord goes to zero [2].

Note that any finite dimensional Euclidean space R™, n > 1, and any Hilbert space H is
clearly uniformly convex due to the parallelogram identity

2 2 2 2
[l +yll” + [l = ylI™ = 2([l=]" + ly[I%)- (1)
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In the same paper [2, Section 3], Clarkson proved that the classical Lebesgue spaces LP(u)
and /P, for 1 < p < oo, satisfy this property too, i.e., they are uniformly convex.

The dual notion to uniformly convex Banach space is the notion of uniformly smooth
Banach space. A Banach space X is said to be uniformly smooth if the expression

sup{l —

equals to o(7) as 7 — 0.

The duality is proven in [10, Propositition 1.e.2] (see also [3, 9]). Namely, a Banach space
X is uniformly convex if and only if X* is uniformly smooth, where X* is the dual space.
Moreover, in the same proposition, authors proved the identity connecting the modulus of
convexity (see Definition 3) of X and the modulus of smoothness (see Definition 3) of its dual
X*. The notion of a uniformly smooth Banach space is also closely related to uniform Frechet
differentiability of a norm of the given Banach space |4, Section 2.4].

Equivalent definitions of uniform convexity and uniform smoothness via the modulus of
convexity and the modulus of smoothness, respectively, can be found in Definition 4.

r+y
2

H el =yl =1, Jlz—yl < 27}

In general, geometric properties including uniform convexity and uniform smoothness
properties of ¢P-spaces associated with the unitary dual of a compact group G based on the
Schatten-von Neumann ideals were studied recently in [1].

Using the same approach, in this paper we investigate the uniform convexity and uniform
smoothness of non-commutative fP-spaces on unitary dual of a compact group G based on
the Hilbert-Schmidt ideals (see Theorem 5), simply denoted as 7(G) [6, Section 2.1.4] (see
also [5, Section 2.14.2], [8]). As a consequence of the Milman-Pettis’s theorem, we state that
these spaces are also reflexive for 1 < p < co. These (@) spaces based on Hilbert-Schmidt
ideal are the generalization of fP-spaces over the compact group G, denoted as ((G) (see [5],
[6], [8], [11]). One of the known applications of £7(G) spaces is the Hausdorff-Young theorem

for all compact groups [5, Section 2.14.1].

2 Preliminaries

In this section, we recall the necessary preliminaries and the basics of the main object of this
paper, the noncommutative ¢P-spaces, denoted by (P (é) [11, Section 10.3.3|, associated with
a compact group based on the Hilbert-Schmidt ideal. We will follow the nomenclature and
notation of [1] and we also refer to [1] (or [11]) for any unexplained terminology. Throughout
this paper, by (L(H), || - |l z¢)) and (S*(H), || - [ls2(31)), we denote the -algebra of all bounded
linear operators on a Hilbert space H and Hilbert-Schmidt ideal of compact operators on H,
respectively (see, for example, [12, Chapter 2| or |7, Chapter 3]).

Let G be a compact group. By CA}, we denote the unitary dual of G, i.e., the set of
all equivalence classes of irreducible unitary representations from Rep(G) (see [11, Definition
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7.5.7 and 10.2.1]). Let [¢] € G denote the equivalence class of a strongly continuous irreducible
unitary representation § : G — U(H¢), where H¢ is a representation space and note that H,
is finite dimensional since G is compact. We also set dim(§) = dim(Hy).

The space ./\/l(é) consists of all mappings

G — | LHe) © G cmm,
m=1

[€]eG

satisfying F'([¢]) € L(He¢) for every [£] € G. Note that in matrix representations, one can
view F([¢]) € CImExdmE) a5 5 dim(€) x dim(¢) matrix.

Let (€) = /1+ %,

positive Laplacian (in a bijective manner) indexed by an equivalence class [{] € G (for more
details, see [11, Definition 10.3.18]). The space S’(é) of slowly increasing or tempered distri-
butions on the unitary dual G is defined as the space of all H € ./\/l(é) for which there exists
some k € N such that

where A, €] € é, denotes the corresponding eigenvalue of the

S dm(©) (€)1 H )y < o0
[€leG
where ||| 2(3¢,) := ||'l| s> is a Hilbert-Schmidt norm. The convergence in 5’ (G) is defined as

follows: the sequence H; € S'(G) is said to be converging to H € §'(G) in S'(G) as j — oo,
if there exists some k € N such that

S dim(€)() ™ [ Hj(€) — HO)llg2 gy = 0. — oo
[€]eG

We now define ¢P-spaces over the unitary dual G of a compact group G based on the
Hilbert-Schmidt ideal.

Definition 1. [11, Definition 10.3.36] For 1 < p < oo, the space (P(G) = (P (G dim(§) (1277%)>
is given as the space of all H € §'(G) such that

1/p

[Hlpg = | 3 (@im@y G |H @y, | <o

[€leG
For p = oo, the space éoo(é) is given as the space of all H € S’(CA}') such that

1 [l oo gy = sup (dim(€)) ™2 | H ()] s2(3¢) < 00-
[€leG
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For the noncommutative spaces ¢P(G), 1 < p < oo, the following Clarkson type inequali-
ties are known from [13, Theorem 3|. The proof can also be found in [13].

Proposition 2. Let 1 < p,q < oo with % —1—5 = 1. Then, for any Hy,Hy € Ep(é), one has
the following inequalities:

1. If 1 <p <2, then

1/q 1/
Hi + H, || Hy — Hy || 1 P
<H122 A+H122 A) s<2mm@@ﬁ4m@mg>
(@) r(G)
2. If 2 < p < o0, then
H, + H, | m-mlr \"" /1 g
(H 2 - H 2 A> = (2 <”H1HZP<6>+ ”HZHZP@))) '
w(G) w(G)

In general, for a given Banach space, one can define the notions of its modulus of convexity
and modulus of smoothness.

Definition 3. Let (X, || - ||x) be a Banach space. Its modulus of convexity and modulus of
smoothness are defined by

. r+y
(@)=t {1 |22 oy x fell=ilx =1 Je-alx =),
X
for 0 < e <2, and
T+ Y|y + ||z —ty
o) = sup IV Z W oy el = e =1},

for t > 0, respectively.

These notions are helpful to classify uniformly convex and uniformly smooth Banach
spaces, respectively.

Definition 4. Let X be a Banach space, and dx(¢), 0 < ¢ < 2, and px(t), t > 0, be its
modulus of convexity and modulus of smoothness, respectively. Then, the Banach space
X is said to be uniformly convex if dx(g) > 0 for every ¢ > 0, and uniformly smooth if
lim £X1) — .

t—0 1
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3 Main results

The main result of this paper is the following one from [1, Theorem 4.1]. In contrast to [1],

we now present its full proof here.

Theorem 5. The space Ep(@) s uniformly convexr and uniformly smooth for 1 < p < occ.
To prove Theorem 5, we first present the following lemma.

Lemma 6. Let 1 < p < o0, 0<e<2andt > 0. Let g be a conjugate index of p, i.e.,
1,1

=42 =1.

p g

1. If 1 <p <2, then

e? P
5@(@)(5) > g 20" ng(@)(t) < '
2. If 2 < p < o0, then
eP e
5”(@)(6) > ﬁ, ng(@)(t) < 5

Proof. 1. Let 1 < p < 2 be given. We begin by proving the inequality for the modulus

~

of convexity. Assume that Hi, Hy € (P(G) satisfy both ||H1||ép(@) = ||H2||£p(@) = 1 and
|H1 — HQH@P(@) = ¢. By Proposition 2, we then have the following:

q 1/q

ef'(@))

q . (;>q> 1/q B <HH1 —2FH2

o (G)

1 p p Hr
< (5 (1l g + 1l ) ) =1

Thus, we obtain the inequality:

H, + Hy
2

1 n HH1 — Hy
(@) 2

Hi + Hy 4
2

o (G)

1 q
- e
2 - q24

w@

which implies that
Hyi + Ho
2

where the last inequality follows from Bernoulli’s inequality, (1 + x)! < 1 + tx for all real
numbers 0 < ¢ <1 and z > —1. Finally, rewriting the expression as

)

q
< 1—‘
w(G)

el Hy + Hy
q2¢9 — 2
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and taking the infimum over all Hy, Hy € fP(G) that satisfy the initial conditions, we conclude
that
4
6&0(@)(5) > @, O<5§2

~

We now demonstrate the inequality for the modulus of smoothness. Let Hy, Hy € /P(G)
satisfy \|H1H€p(é) = HHQHEP(G\) = 1. It is important to note that the function f(z) = 27 for
x > 0, where ¢ > 2, is convex. Now, define

w1 = | Hy+ tHo|l gy w2 = [[Hy — tHall ) -

By the definition of convexity, we have

an+m)—(Wﬂ+ﬁMW@ﬁWH“%HﬂM®>q

2 2
q q
flar) | flzy) I ”H?”m@) 1~ tHZ”eP@)

< pu—
- 2 + 2 2 + 2
The right hand side simplifies to
24 HH1 +tHy ||? HHl —tHy ||?
_ P — R _|_ P — R .
2 2 (@) 2 )
Combining this with the last inequality, we have
1
HHI—FtHQHZP(é)—FHHl—tHQHEP(@) < 2 HHl—i-tHQ q +HH1_tH2 q /q
2 — 2l/4 2 (@) 2 (@) '

Next, applying Proposition 2 to the right-hand side, we obtain

V) + Bl + I Hy — tHallpgy 2
9 — 921/q

1 P P 1 1/
(2 (HHlHZP@ + HtHQH@(@))) = (1+*)"/P.
Thus, we have

Hy + tHs|| oz + | Hi — tHal| 0 ’
I ler@) : I lo@ <@+ -o1<
p

where the final inequality follows from Bernoulli’s inequality. Finally, taking the supremum

~

over all Hy, Hy € (P(G) that satisfy the initial conditions, we conclude
g

p@(é) < Ea t>0.
2. The proof of the second part follows a similar approach to part (i) and utilizes the
inequality from Proposition 2, so we omit the details. O
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Proof of Theorem 5. Let 1 < p < 2. By Lemma 6, we have

g4
5817(6) (6) S q- 2(]’ Ve > 07
and p .
. -
lim — 29 < Jim = =,
t—0 ¢ t—0 p

~

Therefore, ¢P(G) is uniformly convex and uniformly smooth for 1 < p < 2. The case for
2 < p < oo follows similarly from Lemma 6, so we omit the details. O

The Milman-Pettis theorem states that every uniformly convex and every uniformly
smooth Banach space is reflexive [10, Proposition 1.e.3]. Hence, as a consequence of The-
orem 5, we easily derive the following fact.

~

Corollary 7. The space P(G) is reflexive for 1 < p < co.

Another proof of this result is given in [13, Theorem 2.
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Axeimbek ML.E., Tynenop K.C. TMJIbBBEPT-IIMUAT NAEAJIBIHA HETI3JIEJII'EH
(@) KEHICTIKTEPIHIH BIPKAJIBIIITHI JOHECTIT'T MEH BIPKAJIBIIITHI TET'ICTI-
I'L

Byn xymbicta 6i3 ['unpbepr-IIIMuar waeaibiHa HEri3Ie/reH BIKIIAM TOUTHIH, YHUTAPJIBI
JAyaabIMeH OaiiiaHbICThl /P-KeHiCTIKTepiHiH, OipKAJIBIITHL JIOHECTIr MeH 61pKaJIbIITLI TericTiriin
3epTrTeiimMiz.

Tyiiin cesaep: KoMmmakT Tom, KOMIIAaKT TONITapMEH KaybIMIACTBIPbLIFaH fP-KeHicTikTepi,
GipkasbinThl Teric Barmax keHicTiri, 6ipKaJIbIIThL JeHec BaHac KeHicTiri.

Axpimbexk ML.E., Tymenos K.C. PABHOMEPHA{ BHIIIYKJ/IOCTh 1 PABHOMEP-
HAAd TJIAJIKOCTBH TTPOCTPAHCTB fp(@) HA OCHOBE UMJIEAJIA T'MJIbBEPTA-
[IMWTA.

B nmamnoit pabore n3ydaiorcss CBONCTBAa paBHOMEDPHOMI BBINIYKJ/IOCTH W PABHOMEDPHOM TUIa/I-
KOCTH {P-TIPOCTPAHCTB, CBA3AHHBIX C YHUTAPHBIM COIPS?KEHHBIM K KOMITAKTHOM I'DYIIIE, OC-
HOBaHHBIE Ha umease ['mianbepra-IIImuara.

Kurouesbie ciaoBa: KommnakTHasi rpyiia, fP-pocTpaHCTBA aCCOIMUPOBAHHBIE C KOM-
[TAKTHO} I'PYIIION, PABHOMEPHO TJIaKOE OAHAXOBO IIPOCTPAHCTBO, PABHOMEPHO BBIILYKJIOE Oa-

HaXOBO ITPOCTPAaHCTBO.
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