KAZAKH M ATHEMATICAL JOURNAL ISSN 1682-0525

24:4 (2024) 6-21

On algebras of binary isolating formulas for weakly
circularly minimal theories of convexity rank 2

Beibut Sh. Kulpeshov!, Sergey V. Sudoplatov?
IKazakh British Technical University, Almaty, Kazakhstan
2Sobolev Institute of Mathematics, Novosibirsk State Technical University, Novosibirsk, Russia
Ib.kulpeshov@kbtu.kz, 2sudoplat@math.nsc.ru
Communicated by: Bektur B. Baizhanov

Received: 21.12.2024 * Accepted/Published Online: 30.12.2024 * Final Version: 30.12.2024

Abstract. This paper is devoted to the study of weakly circularly minimal circularly ordered structures.
The simplest example of a circular order is a linear order with endpoints, in which the largest element
is identified with the smallest. Another example is the order that arises when going around a circle. A
circularly ordered structure is called weakly circularly minimal if any of its definable subsets is a finite
union of convex sets and points. A theory is called weakly circularly minimal if all its models are weakly
circularly minimal. Algebras of binary isolating formulas are described for Ry-categorical 1-transitive non-
primitive weakly circularly minimal theories of convexity rank 2 with a trivial definable closure having
a monotonic-to-right function to the definable completion of a structure and non-having a non-trivial

equivalence relation partitioning the universe of a structure into finitely many convex classes.
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1 Preliminaries

Algebras of binary formulas are a tool for describing relationships between elements of the
sets of realizations of a one-type at the binary level with respect to the superposition of
binary definable sets. A binary isolating formula is a formula of the form ¢(z,y) such that
for some parameter a the formula ¢(a,y) isolates a complete type in S({a}). The concepts
and notations related to these algebras can be found in the papers [1, 2]. In recent years,
algebras of binary formulas have been studied intensively and have been continued in the
works [3]-[11].
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Let L be a countable first-order language. Throughout we consider L-structures and
assume that L contains a ternary relational symbol K, interpreted as a circular order in these
structures (unless otherwise stated).

Let M = (M, <) be a linearly ordered set. If we connect two endpoints of M (possibly,
—o0 and +00), then we obtain a circular order. More formally, the circular order is described
by a ternary relation K satisfying the following conditions:

(col) VaVyVz(K(z,y,z) = K(y,z,x));

(co2) VaVyVz(K(z,y,z2) NK(y,z,2) @z =yVy=2zVz=u1),

(co3) VaVyVz(K (x,y, z) = Vt[K(z,y,t) V K(t,y, 2)]);

(cod) VaVyVz(K (z,y,z) V K(y,z, 2)).

The following observation relates linear and circular orders.

Fact 1. [12] (i) If (M, <) is a linear ordering and K is the ternary relation derived from <
by the rule K(x,y,2) = (<y<z)V(z<z<y)V(y < z<uz), then K is a circular order
relation on M.

(11) If (N, K) is a circular ordering and a € N, then the relation <, defined on M :=
N\ {a} by the rule y <, z :& K(a,y,2) is a linear order.

Thus, any linearly ordered structure is circularly ordered, since the relation of circular
order is ()-definable in an arbitrary linearly ordered structure. However, the opposite is not
true. The following example shows that there are circularly ordered structures not being
linearly ordered (in the sense that a linear ordering relation is not (-definable in an arbitrary
circularly ordered structure).

Example 2. [13, 14] Let Q% := (Qq2, K, L) be a circularly ordered structure, where L =
{03, 0%}, for which the following conditions hold:

(i) its domain Q9 is a countable dense subset of the unit circle, no two points making the
central angle ;

(ii) for distinct a,b € Qg

(a,b) € 0p & 0 < arg(a/b) < ,

(a,b) € 01 & 7w < arg(a/b) < 2m,

where arg(a/b) means the value of the central angle between a and b clockwise.
Indeed, one can check that the linear order relation is not (-definable in this structure.

The notion of weak circular minimality was studied initially in [15]. Let A C M, where
M is a circularly ordered structure. The set A is called convex if for any a,b € A the following
property is satisfied: for any ¢ € M with K(a,c,b), ¢ € A holds, or for any ¢ € M with
K(b,c,a), c € Aholds. A weakly circularly minimal structure is a circularly ordered structure
M = (M, K,...) such that any definable (with parameters) subset of M is a union of finitely
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many convex sets in M. The study of weakly circularly minimal structures was continued in
the papers [16]-21].

Let M be an Rg-categorical weakly circularly minimal structure, G := Aut(M). Following
the standard group theory terminology, the group G is called k-transitive if for any pairwise
distinct a1,a9,...,ar € M and pairwise distinct by, b, ..., b € M there exists g € G such
that g(a1) = b1,g(a2) = be,...,g(ag) = bg. A congruence on M is an arbitrary G-invariant
equivalence relation on M. The group G is called primitive if G is 1-transitive and there are
no non-trivial proper congruences on M.

(1) Ko(z,y,2) := K(z,y,2) Ny Zx ANy # z ANz # z.

(2) K(u1,...,u,) denotes a formula saying that all subtuples of the tuple (uy,...,u,)
having the length 3 (in ascending order) satisfy K; similar notations are used for K.

(3) Let A, B, C be disjoint convex subsets of a circularly ordered structure M. We write
K(A,B,C) if for any a,b,c € M with a € A, b € B, ¢ € C we have K(a,b,c). We extend
naturally that notation using, for instance, the notation Ky(A,d,B,C) if d ¢ AU B UC and
Ky(A,d, B) A Ky(d, B,C) holds.

Further we need the notion of the definable completion of a circularly ordered structure,
introduced in [15]. Its linear analog was introduced in [22]. A cut C(x) in a circularly ordered
structure M is a maximal consistent set of formulas of the form K (a,z,b), where a,b € M. A
cut is said to be algebraic if there exists ¢ € M that realizes it. Otherwise, such a cut is said to
be non-algebraic. Let C(z) be a non-algebraic cut. If there is some a € M such that either for
all b € M the formula K (a,z,b) € C(x), or for all b € M the formula K (b, z,a) € C(x), then
C(z) is said to be rational. Otherwise, such a cut is said to be irrational. A definable cut in
M is a cut C'(x) with the following property: there exist a,b € M such that K(a,z,b) € C(x)
and the set {c € M | K(a,c,b) and K(a,z,c) € C(z)} is definable. The definable completion
M of a structure M consists of M together with all definable cuts in M that are irrational
(essentially M consists of endpoints of definable subsets of the structure M).

[15] Let F'(x,y) be an L-formula such that F'(M,b) is convex infinite co-infinite for each
be M. Let F(y) be the formula saying y is a left endpoint of F(M,y):

ElzlEIzQ[Ko(zl, Y, 2’2) AN th(K(zl, t1, y) Nt 75 Yy — ﬁF(tl, y))/\
Vo (K (y,ta, 22) Nto # y — F(ta,y))].
We say that F(z,y) is convez-to-right if
M = VyVa[F(z,y) — F'(y) AV2(K(y, z,2) = F(z,y))].

If Fy(x,y), Fo(z,y) are arbitrary convex-to-right formulas we say F is bigger than F} if there
is a € M with Fy(M,a) C Fo(M,a). If M is 1-transitive and this holds for some a, it holds
for all a. This gives a total ordering on the (finite) set of all convex-to-right formulas F'(z,y)
(viewed up to equivalence modulo Th(M)).
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Consider F(M,a) for arbitrary a € M. In general, F(M,a) has no right endpoint in
M. For example, if dcl({a}) = {a} holds for some a € M then for any convex-to-right
formula F'(z,y) and any a € M the formula F'(M,a) has no right endpoint in M. We write
f(y) :=rend F(M,y), assuming that f(y) is the right endpoint of the set F(M,y) that lies
in general in the definable completion M of M. Then f is a function mapping M in M.

Let F(z,y) be a convex-to-right formula. We say that F(x,y) is equivalence-generating
if for any a,b € M such that M |= F(b,a) the following holds:

M E=Vx(K(b,z,a) Nz # a — [F(x,a) < F(z,b)]).

Lemma 3. [20] Let M be an Wg-categorical 1-transitive weakly circularly minimal structure,
F(x,y) be a convex-to-right formula that is equivalence-generating. Then E(x,y) := F(z,y)V
F(y,x) is an equivalence relation partitioning M into infinite convex classes.

Let E(x,y) be an (-definable equivalence relation partitioning M into infinite convex
classes. Suppose that y lies in M (non-obligatory in M). Then

E*(z,y) := 3y1Iyely1 # y2 AVUEK (y1,t,y2) — E(t,x)) A Ko(y1,y,y2)]-

Let M, N be circularly ordered structures. The 2-reduct of M is a circularly ordered
structure with the same universe of M and consisting of predicates for each (-definable relation
on M of arity < 2 as well as of the ternary predicate K for the circular order, but does not
have other predicates of arities more than two. We say that the structure M is isomorphic
to N up to binarity or binarily isomorphic to N if the 2-reduct of M is isomorphic to the
2-reduct of V.

Let f be a unary function from M to M. We say that f is monotonic-to-right (left) on
M if it preserves (reverses) the relation Ky, i.e. for any a,b,c € M such that Ky(a,b,c), we

have Ko(f(a), f(b), f(¢)) (Ko(f(c), F(b), f(a)))-

The following definition can be used in a circular ordered structure as well.

Definition 4. [23|, [24] Let T be a weakly o-minimal theory, M be a sufficiently saturated
model of T, A C M. The rank of convezity of the set A (RC(A)) is defined as follows:

1) RC(A)=—-1if A=10.

2) RC(A) =0 if A is finite and non-empty.

3) RC(A) > 1if A is infinite.

4) RC(A) > a + 1 if there exist a parametrically definable equivalence relation E(z,y)
and an infinite sequence of elements b; € A,7 € w, such that:

e For every i,j € w whenever i # j we have M = —~E(b;, b;);

e For every i € w, RC(E(x,b;)) > « and E(M,b;) is a convex subset of A.
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5) RC(A) > § if RC(A) > « for all a < 4, where § is a limit ordinal.

If RC(A) = a for some «a, we say that RC(A) is defined. Otherwise (i.e. if RC(A4)) > «
for all ), we put RC(A) = oc.

The rank of converity of a formula ¢(x,a), where a € M, is defined as the rank of
convexity of the set ¢(M,a), i.e. RC(¢p(x,a)) := RC(4(M,a)).

The rank of convexity of a 1-type p is defined as the rank of convexity of the set p(M),
ie. RC(p) := RC(p(M)).

In particular, a theory has convexity rank 1 if there is no definable (with parameters)
equivalence relations with infinitely many infinite convex classes.

The following theorem characterizes up to binarity Nop—categorical 1-transitive non-primi-
tive weakly circularly minimal structures M of convexity rank greater than 1 having both a
trivial definable closure and a convex-to-right formula R(z,y) such that r(y) := R(M,y) is
monotonic-to-right on M:

Theorem 5. [16] Let M be an No—categorical 1-transitive non-primitive weakly circularly
minimal structure of convezity rank greater than 1, dcl({a}) = {a} for some a € M. Suppose
that there exists a convex-to-right formula R(x,y) such that r(y) := R(M,y) is monotonic-
to-right on M. Then M is isomorphic up to binarity to
Lk = (M, K® E} E3,... EZ E} |, R,

where M is a circularly ordered structure, M is densely ordered, s > 1; Es11 ts an equivalence
relation partitioning M into m infinite convex classes without endpoints; E; for everyl <1i < s
is an equivalence relation partitioning every E;i1-class into infinitely many infinite convex
E;-subclasses without endpoints so that the induced order on E;-subclasses is dense without
endpoints; R(M,a) has no right endpoint in M and r*(a) = a for alla € M and some k > 2,
where r*(y) == r(r*(y)); for every 1 <i < s+ 1 and any a € M

My 1 B (a,7(a)) ANVY(Ei(y, a) = Fu[B] (u, () A Ef (u,7(y))]),
m =1 or k divides m.

In [7] algebras of binary isolating formulas are described for Rg-categorical weakly cir-
cularly minimal theories with a primitive automorphism group. In [8] algebras of binary
isolating formulas are described for Ng-categorical weakly circularly minimal theories of con-
vexity rank 1 with a 1-transitive non-primitive automorphism group and a non-trivial definable
closure. In [9]-[10] algebras of binary isolating formulas are described for Ry-categorical weakly
circularly minimal theories of convexity rank greater than 1 with a 1-transitive non-primitive
automorphism group and a non-trivial definable closure. In [11] algebras of binary isolating
formulas are described for Ny-categorical weakly circularly minimal theories of convexity rank
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1 with a 1-transitive non-primitive automorphism group and a trivial definable closure. Here
we describe algebras of binary isolating formulas for Ny-categorical 1-transitive non-primitive
weakly circularly minimal theories of convexity rank 2 with a trivial definable closure having a
monotonic-to-right function to the definable completion of a structure and non-having a non-
trivial equivalence relation partitioning the universe of a structure into finitely many convex
classes.

2 Results

Definition 6. [2] Let p € S1(0)) be non-algebraic. The algebra P, ) is said to be deterministic
if uy - ug is a singleton for any labels w1, ua € py ().

Generalizing the last definition, we say that the algebra P, is m-deterministic if the
product uy - ug consists of at most m elements for any labels u1, uz € p,(,). We also say that
an m-deterministic algebra P, ;) is strictly m-deterministic if it is not (m — 1)-deterministic.
Obviously, strict 1-determinacy of an algebra is equivalent its determinacy.

Example 7. Consider the structure My, = (M, K3, F?, R?) from Theorem 5 with the
condition that the function r(y) := R(M,y) is monotonic-to-right on M.
We assert that T'h(Mj ; 5) has seven binary isolating formulas:

Oo(x,y) =z =y,
01($,y) = Ko(l',y, r(a:)) A El(x’y)a

02(33, y) = KO(:E’ y,r(a?)) N ﬂlal(xv y) A _'Eik(ya T(CL‘

)
03(x,y) := Koz, y,r(x)) A =Er(z,y) A Ei(y,r(z)),
Os(x,y) = Ko(r(x),y, ) A ~Er(z,y) A By (y, 7(2)),
05(x,y) := Ko(r(z),y,z) A =Er(z,y) A ~Ei(y,7(x)),
O6(x,y) := Ko(r(z),y,x) A Er(z,y),

and the following holds for any a € M:

Ko(bo(a, M), 01(a, M), 02(a, M),05(a, M), 04(a, M), 05(a, M), 06 (a, M)).
Define labels for these formulas as follows:

label k for 0y (x,y), where 0 < k < 6.

It is easy to check that for the algebra B M, the Cayley table has the following form:
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10 1 2 3 4 5 6

0] {0y | {1} {2} {3} {4} {5} {6}
Ly {1 {2} (3.4} | {4 {5} {0,1,6}
2 | {2} {2} {2,3,4,5} {5} {5} {0,1,2,5,6} {2}

31 {3}| {34} {5} {6y 11{0,1,6} {2} {3}

41 {4 {4 {5} {0,1,6} | {1} {2} {3,4}
5 {5} {3y [{0,1,2,56) | {2} 2y | {23,451 | {5}

6 | {6} | {0,1,6} {2} {3y | {34} {5} {6}

By the Cayley table the algebra 3 M, , 18 commutative and strictly 5-deterministic.

Theorem 8. The algebra ‘BM/ . of binary isolating formulas with monotonic-to-right func-
tion v has 3k + 1 labels, s commutatwe and strictly 5-deterministic for every k > 2.

Proof of Theorem 8. We assert that the algebra ‘BM{ . has 3k + 1 binary isolating
formulas: -

Oo(z,y) ==z =y,
01(z,y) == Ko(z,y,7(x)) A Er(z,y),
O2(z,y) == Ko(z,y,r(z)) A ~Ei(z,y) A ~E1(y,7(2)),
03(z,y) == Ko(z,y,7(z)) A Ef(yar(w)),

O31-2(w,y) = Ko(r'(z),y,7'(x)) A Ef (y,r' ' (z)), where 2 <1<k —1,
O31-1(w,y) := Ko(r' " (z),y,7'(x)) A =Ef (y, ' (x)) A —Ef(y, 7' (x)), where 2 <1<k —1,
O31(z,y) == Ko(r''(2),y, 7' (2)) A E{(y, 7' (2)), where 2 <1<k -1,
O3p—a(x,y) = Ko(r* ' (2),y,2) A Ef (y,r* ! (),

Os5_1(2,y) == Ko(r* 1(z),y,2) A =Et(y,r" () A ~E1(y, 2),

O3 (w,y) := Ko(r" ' (z),y,2) A Exr(y, o).

Thus, we have 1+ 3+ 3(k —2) +3 = 3k + 1 binary isolating formulas. Moreover, we have
defined the formulas so that for any a € M the following holds:

Ko(eo(a, M), 01((1, M), 92(&, M), N ,«93k_1(a, M), 93k(a, M))

Prove now that the algebra B M, is commutative and strictly 5-deterministic for every
k> 2.

Firstly, obviously that 0-1 =1-0 = {l} for any 0 < < 3k. Suppose further that I; # 0
and [y # 0.
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Consider the following formula

3t[6, (x,t) A Oy, (t, y)].

Case 1: [1 =3mq — 2 for some 1 < m; <k —1.

We have: Ko(r™~1(x),t,7™(z)) and Ej(t,r™ " 1(x)).

Let Iy = 3mo—2 for some 1 < mg < k—1,i.e. Ko(r™~1(t),y,r™2(t)) and Ef(y,r™271(t)).
Then we obtain the following;:

Ko(rm1+m2_2 (2),y, pratme—l (x)) and Ej(y, rm1+m2_2(a:)).

Suppose firstly that (3m;—2)+(3mae—2) < 3k+1. We assert that in this case mj+mao—1 <
k. Then we have l; - lo = {3(m1 +m2 — 1) — 2}.

Obviously, (3m; —2) + (3mae — 2) # 3k + 1.

Suppose now that (3m;—2)+(3me—2) > 3k+1. Let s = (m;+ma—1)[mod k]. Obviously,
0<s<k—1. If s =0, we have Ko(r*(2),y,r) and Ef(y,7*"1(x)), i.e. Iy - lo = {3k — 2}.
If 1 < s <k—1then we have Ko(r*~(z),y,7*(x)) and E}(y,r*"(z)), i.e. Iy -1y = {35 — 2}.

Let now Iy = 3mg—1 for some 1 < mg < k—1. Then we have the following: Ko(r™21(t),
y, ™2(t)), ~Ef(y,r™2~Y(t)) and —~E}(y,7™2(t)). Whence we obtain:

Fo(rm e 2(z),y, A (1)), I (g, 72 () and B (g, 7 ().

Suppose firstly (3m; —2) + (3mg — 1) < 3k + 1. We assert that mj +mg — 1 < k. In this
case we have [y - lo = {3(m1 +ma — 1) — 1}.

Obviously, also (3m; —2) + (3ma — 1) # 3k + 1.

Suppose now (3mj —2) + (3mg — 1) > 3k + 1. Let s = (mq + mg — 1)[mod k]. Obviously,
0<s<k-1 Ifs =0, we have Ko(r* 1(z),y,2), =Ef(y,v*"1(z)) and =FE(y,z), i.e.
li-lp = {3k —1}. If 1 < s < k— 1 then we have Ko(r*~!(z),y,r*(x)), ~Ef(y,r*"(z)) and
—Ej(y,r*(x)), i.e. Iy -la = {3s — 1}.

Consider the product I - I;. We have: Ko(r™2~1(x),t,7m2(x)), ~Ef(t,r™2~1(x)), ~E}(t,
rm2(x)), Ko(r™=1(t),y,r™(¢)) and Ej(y,7™ ~1(t)). Whence we obtain:

Ko(r™*ma=2(z),y, r™ 42 (@), 2By (y, r™ 72 (2)) and B (y, v (2)).

If (3m1—2)—|—(3m2—1) < 3k+1thenly-l; = {3(m1—|—m2—1)—1}. If (3m1—2)—|—(3m2—1) >
3k + 1 then in case s = 0 we obtain ly - [ = {3k — 1}, and in case 1 < s < k — 1 we obtain
l2 . l1 == {38 - 1}

Let now Iy = 3mg for some 1 < mgy < k — 1. Then we have: Ko(r™2~1(t),y,r™2(t)) and
Ef(y,r™2(t)). Whence we obtain:

Ej (y, rm1+m2_1(a:)), and either Ko(rm1+m2_2(:v),y,rm1+m2_1(w)) or

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 6—21



14 Beibut Sh. Kulpeshov, Sergey V. Sudoplatov

Kg(rmﬁm?*l (z),vy, prmtme (2)).

Suppose firstly that (3m; — 2) + 3ma < 3k + 1. Then we assert that m; +mg — 1 < k.
Whence we obtain: [y -l = {3(m1 +ma —1),3(m1 +ma — 1) + 1}.

Suppose now that (3m; —2)+3mg = 3k+1. This case is possible since (3m; —2)+3mgy =
3(m1 +mg — 1) 4+ 1. We also have: (3m; —2) 4+ 3mg = 3k + 1 iff m; + mg — 1 = k. Thus, we
obtain: Ei(y,z) and either Ko(r*~!(x),y,x) or Ko(z,y,r(x)), i.e. Iy -lo = {3k,0,1}.

Let now (3m; — 2) + 3mg > 3k + 1. Consider s = (m; + mg — 1)[mod k]. We prove that
0<s<k—1. Indeed, (3m; —2)+3me=3(my+ma—1)+1>3k+1iff mi+mo—1> k.
Sincemi <k—land mg <k—1m;+ma—1<(k—1)+(k—1) =1= 2k — 3. Thus,
k<mi+mg—1<2k—3, whence 0 < s < k— 1. We have:

Ef(y,r°(x)) and either Kg(rsfl(x), y,m%(x)) or Ko(rs(a:),y,r”l(a:)).

Whence we obtain: Iy -l = {3s,3s + 1}.
Consider the product ly-l;. We have: Ko(r™~1(z),t,r™2(z)), Ef(t, r™2(x)), Ko(r™~1(t),
y, 7™ (t)), and E}(y,r™~1(¢)). Whence we obtain the following:

E’f(y,rmﬁmrl(a:)), and either K()(T‘ml+m272($), y,rmﬁmz*l(x)) or

Ko(rm1+m2_1 (2),y, prmtme (x)).

If 3msy + (3m1 — 1) < 3k+1thenly - -l; = {3(m1 + mo — 1),3(m1 + mo — 1) + 1} If
3mg + (3m1 — 1) =3k + 1 then Iy -1l; = {3k,0,1}. If 3mgy + (3m1 — 1) > 3k + 1 then
lh -l = {35, 3s + 1}

Let now Iy = 3k — 2, i.e. Ko(r*=1(t),y,t) and Ef(y,r*~1(t)). Whence we obtain:

Ko(r™ =2 (), y, ™! (@) and B (y,r™ 2 (@),

ie. Ko(r™m=2(z),y,r™1(x)) and Ej(y,r™ 2(x)). Consequently, I; -l = {3(m1 — 1) — 2}.
Consider the product Iy - I;. We have: Ko(r*~(z),t,z), Ef (t,v*1(2)), Ko(r™~(t),,
r™1(t)), and Ef(y,r™~1(t)). Whence we obtain:

Ko(r™ ™2 (z),y,r™ " (2)) and B (y, 7™ (x)),

i.e. l2 . ll = {3(7711 - 1) - 2}.
Let now ly = 3k — 1, i.e. Ko(r*=(t),y,t), ~Ef(y,r*71(t)) and —=F}(y,t). Whence we
obtain:
Ko(r™ ™2 (z),y, ™ (2)), B (y, ™ 2 (x)) and ~E (y, 7™} (z)).

Thus, ll . lg = {3(777,1 - 1) - 1}.
Consider the product Iy -11. Then we have: Ko(r*~(z),t,z), =Ef(t,7* 1 (z)), = Ef(x,1),
Ko(r™=1(t),y, r™1(t)), and Ef(y,r™ ~1(t)). Whence we obtain:

Ko(r™ =2 (x),y,r™ (), =B (y, 7™ " *(x)) and ~Ef (y,r™ ' (z)),
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ie. lg . l1 = {3(m1 - 1) - 1}.
Let now Iy = 3k, i.e. Ko(r*=1(t),y,t), and E}(y,t). Whence we obtain:

Ei(y,r™ ! (x)) and either Ko(r™ (), y,r™ " (z)) or Ko(r™ (), y,r"™ (z)),

i.e. l1 . l2 = {3(’!711 — 1),377”61 — 2}.
Consider the product Iy - [;. Then we have: Ko(r*~1(z),t,z), Ef(z,t), Ko(r™L(t),y,
r™i(t)), and Ef(y,r™1(t)). Whence we obtain:

Ei(y,r™ ! (x)) and either Ko(r™ ~>(z),y,r™ "} (2)) or Ko(r™ ! (z),y, ™ (x)),
i.e. l2 . ll = {3(7711 — 1), 3m1 — 2}

Case 2. Iy =3mq — 1 for some 1 <m; <k —1.

We have the following: Ko(r"™ ~1(x),t,r™ (z)), ~Ef(t,r™~1(x)) and —E;(t,r™(x)).

Let Iy = 3mg — 1 for some 1 < mg < k —1,1i.e. Ko(r™2=1(t),y,7m2(t)), ~Ef(y,r™2"1(t))
and —E7 (y,r™2(t)). Whence we obtain:

either Ko(r™m272(g), g, 7™+ 271 (1)) or Ko(r™ ™27 (z), y, r™TM2(g)).

Suppose firstly that (3m; — 1) + (3mg — 1) < 3k + 1. It can be checked that (3m; —1) +
(3mg — 1) < 3k + 1 iff m; +mgo — 1 < k. Then

li-lg ={3(m1+ma—1)—1,3(m1 +ma—1),3(m1 +ma —1)+1,3(m1 +ma — 1) +2}.

Let now (3mj —1)4 (3ma—1) = 3k+1. This case is possible, and (3m; —1)+ (3mg—1) =
3k + 1 iff my + mo — 1 = k. Then we have: either Ko(r*(z),y,2) or Ko(z,y,r(x)).
Consequently, I; - lo = {3k — 1,3k, 0,1, 2}.

Let now (3m; — 1) + (3mg — 1) > 3k + 1. Clearly, (3m1 — 1) + (3ma — 1) > 3k + 1 iff
mi+ma—1 > k. Let s = (m1+mgo—1)[mod k]. Since k < m;+mo—1 < k—14+k—1-1 = 2k—3,
we have 0 < s < k—3. Thus, we obtain: either Ko(r*~!(x),y,r*(x)) or Ko(r*(z),y,r*1(z))),
whence Iy - lo = {3s — 1,3s,3s + 1,35 + 2}.

Let Iy = 3mg for some 1 < mg < k — 1, i.e. Ko(r™27L(t),y,7™2(t)) and Ej(y,r™2(t)).
Whence we obtain:

Kofr™ 7 @),y 1747 ), 2 ™ 7 @) and B (074 a).

Suppose firstly that (3mq — 1) +3mga < 3k + 1. It can be checked that (3m; — 1) +3mg <
3k + 1iff m; +mg — 1 < k. In this case l; - lo = {3(m1 + mg) — 1}.

The case (3m1—1)43ms = 3k+1 is impossible. Suppose that (3mi—1)+3me > 3k+1. It
can be checked that (3m;—1)+3mgy > 3k+1iff mi+mo—1 > k. Let s = (my+mo—1)[mod k].
Since k<mi+mo—1<k—14k—1—1=2k—3, we have 0 < s < k — 3. Thus, we obtain:

Ko(r®(x),y, """ (2)), =Eq (y,r* () and =Ej (y, 7" (x)),
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whence [y - lo = {3(s+1) — 1}.
Consider the product lo-l1. We have: Ko(r™2~1(xz),t,7™2(x)), B} (t,r™2(x)), Ko(r™~1(t),
y, ™ (t)), =Ef (y,r™~Y(t)) and —E}(y,7™(t)). Whence we obtain:

Ko(rm™Fma=l(z),y, r™ 2 (2)), 2By (y, v "2 (2)) and —Ej (y, ™2 ().

If (3my1 — 1)+ 3ma < 3k +1 then Iy -l = {3(my +mg) — 1}. If (3m1 — 1)+ 3mp > 3k + 1
then la - 13 = {3(s+ 1) — 1}, where s = (m1 + ma — 1)[mod k].
Let now lp = 3k — 2, i.e. Ko(r*~1(t),y,t) and Ef(y,7*~1(¢)). Whence we obtain:

Ko(r™ =2 (),y,r™ (), ~E{ (y, 7™ ~*(x)) and =E{ (y,r™ ! (2)).

Consequently, l; - lo = {3(m1 — 1) — 1}.
Consider the product Iy - I;. We have: Ko(r™ 2(x),y,r™ (z)), =E}(y,r™~%(z)) and
=Ej(y,r™~Y(x)), whence I - I} = {3(m1 — 1) — 1}.
Let now ly = 3k — 1, i.e. Ko(r*=1(t),y,t), ~Ef(y,r*71(t)) and —=F}(y,t). Whence we
obtain:
either Ko(r™ = 2(z),y,r™ Y(z)) or Ko(r™ 1(z),y,r™ (z)).

Clearly, (3mq — 1) +3(k—1) > 3k + 1. Let s = 3(my — 2), whence 4 < s < k — 5. Then
ll . lg = {3(777,1 - 1) - 1,3(m1 - 1),3777,2 - 2,37712 - 1}.

Consider the product Iy -11. Then we have: Ko(r*~1(z),t,z), =Ef(t,7* 1 (z)), ~Ef(x,1),
Ko(r™=1(t),y, r™i(t)), =Ef(y,7™~L(t)), and ~EF(y,r™1(¢)). Whence we obtain:

either Ko(rmld(x),y,rml*l(x)) or Ko(rmlfl(x),y,rml(x)),

1.e. ZQ . ll = {3(m1 - 1) - 1,3(m1 - 1),3m2 - 2,3m2 - 1}.
Let now lp = 3k, i.e. Ko(r*=1(t),y,t), and Ef(y,t). Whence we obtain:

Fo(r™ =2 (@), y, 7™ (&), =B} (g, ™ (@) and —Ef (y,r™ (x),

i.e. ll . l2 == {3m1 - 1}
Consider the product Iz - [;. Then we have: Ko(r*~1(z),t,z), Ef(x,t), Ko(r™~L(t),y,
(L)), =B (y, r™~1(x)) and —Ef(y, 7™ (z)). Whence we obtain:

Koo ) .07 (1), ~E (.17 &) amd B (g, (),
e ly-ly = {3m1 - 1}

Case 8. Iy = 3my for some 1 <m; <k —1.

We have: Ko(r™~1(x),t,7™(z)) and Ef(t,r™ (z)).

Let Iy = 3mg for some 1 < mg < k — 1, ie. Ko(r™2~1(t),y,r™2(t)) and Ej(y,7™2(t)).
Whence we obtain the following:

KO(Tml+m2_1($)7 Y, Tm1+m2 (l‘)) and Eik (y7 Tml+m2 (l‘))
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Suppose firstly that 3m; + 3mo < 3k + 1. It can be checked that 3my 4+ 3mo < 3k + 1 iff
mi+mo < k. If mj +mg =k then Iy -lo = {3k}. If m; +ma < k then [1 -lo = {3(m1+m2)}.

The case 3mi + 3mg = 3k + 1 is impossible. Suppose that 3mi + 3mg > 3k + 1. It
can be checked that 3mq + 3mg > 3k + 1 iff m; +mg > kK iff miy + mog — 1 > k. Let
s = (my+mg—1)[mod k|. Since k <mj;+me—1<k—-—1+k—1—-1=2k— 3, we have
0 < s <k — 3. Thus, we obtain:

Ko(r*(z),y,r* (2)) and B (y,r*"(2)),

whence [y -l = {3s}.
Let now lp = 3k — 2, i.e. Ko(r*=1(t),y,t) and E}(y,7*71(t)). Whence we obtain:

Ef(y,rml*l(x)) and either KO(Tm“Q(x),y,rml*l(x)) or K()(T'mlil(il'),y,’f'ml(x)).

Consequently, [; - lo = {3(m1 — 1),3m; — 2}.
Consider the product I3 - I. We have: Ko(r*=1(x),t,2), Ef(t,r* 1 (x)), Ko(r™~1(t), v,
r™(t)), and Ef(y,r™ (t)). Whence we obtain:

Ei(y,r™ ! (x)) and either Ko(r™ (), y,r™ " (z)) or Ko(r™ (), y,r"™ (z)),

i.e. lg . ll == {3(m1 - 1), 3m1 - 2}
Let now ly = 3k — 1, i.e. Ko(r*=1(t),y,t), ~E;(y,7*"1(t)) and —E1(y,t). Whence we
obtain:
KO(Tml_l(x)ayvrml (x))7_'ET(y7Tml_1(t))7 and ﬁEi‘(yﬂdml (t))7

i.e. ll . lg = {3m1 - 1}
Consider the product Iy - I1. We have the following: Ko(r¥~1(z),t,z), =F;(t,r*1(x)),
—Ef(z,t), Ko(r™=1(t),y, r™(¢)) and Ej(y,7™ (t)). Whence we obtain:

Ko(r™ = (2),y,r™ (@), ~Ef (y, ™ = (1)), and —Ef (y,r™ (1)),

i.e. lg . ll = {3m1 - 1}.
Let now Iy = 3k, i.e. Ko(r*~1(t),y,t), and E;(y,t). Whence we obtain:

Ko(r™~Y(z),y,r™ (z)) and Ex(y,r™ (z)),

i.e. ll . lQ = {3m1}.

Consider the product Iy - I1. Then we have: Ko(r*~1(x),t,2), Ei(x,t), Ko(r™1(t),y,
r™(t)) and Ef(y,r™ (z)). Whence we obtain: Ko(r™ ~!(x),y, r™i(z)) and Ej(y,r™ (x)),
ie. lg . ll = {Sml}

Case 4. 1y =3k — 2.
We have: Ko(r*~1(z),t,z) and Ej(t,r*1(z)).
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Let Iy = 3k —2,i.e. Ko(r*~1(t),y,t) and Ef(y,r*~1(t)). Whence we obtain the following:
Ko(r#2(a), .74 (2)) and B (g4 2 (0). e 11 = (3(k — 1) — 2}

Let now Iy = 3k — 1, i.e. Ko(r*=1(t),y,t), ~Ef(y,7*~1(t)) and —E;(y,t). Whence we
obtain:

Ko(r"2(z),y,r" " (2)), ~E{ (y, 7" *(2)), and ~Ex(y, 7"} (2)),

te. ly-lo={3(k—1)—1}.
Consider the product Iy - I1. We have the following: Ko(r*~1(z),t,z), =Ff(t,r*~1(x)),
—Ej(z,t), Ko(r™~1(t),y, r™1(¢)) and E}(y,r™(t)). Whence we obtain:

~Ef(y,r"2(x)), Ko(r" 2 (), 5,7 (2)) and =Ea(y, "~ (2)),

ie. lo-lh ={3(k—1)—1}.
Let now Iy = 3k, i.e. Ko(r*1(t),y,t), and E{(y,t). Whence we obtain:
Eik(yv rk_l(l')) and either KO(rk_Q(x)v Y, Tk_l(x)) or KO(Tk_l(x)’ Y, 33'),

ie. l1 . lg == {3k} — 2, 3(]{,’ — 1)}
Consider the product Iy - I1. Then we have: Ko(r*~1(z),t,2), Ei(z,t), Ko(r*=1(t),y,t)
and E;(y,r*=1(t)). Whence we obtain:

Ef(y,r*!(2)) and either Ko(r**(2),y,7*"" (2)) or Ko(r*~!(2),y, 2),
i.e. l2 . ll = {3]€ — 2, 3(]€ — 1)}

Case 5. l1 = 3k — 1.
We have: Ko(r*~1(z),t,x), =Ef(t,v*"1(z)) and —|E1(t x).
Let now Iy = 3k — 1, i.e. Ko(r*=1(t),y,t), ~Ef(y,r*"(t)) and —E;(y,t). Whence we
obtain:
K()(TkiQ(SU),y,x),—\ET(y,Tk72(l’)), and _‘El(y7x)’

ie. Iyl = {3k — 4,3k — 3,3k — 2,3k — 1}.
Let now lo = 3k, i.e. Ko(r*=1(t),y,t), and E1(y,t). Whence we obtain:

Ko(r* (@), t,2), ~Ef (t,r* " (2)) and =Eq(t, @),
i.e. ll . l2 == {3]43 - 1}
Consider the product I3 - I;. Then we have: Ko(r¥=1(z),t,z), E1(z,t), Ko(r¥=1(t),y,1),
=E;(y,7*=1(t)) and —FE1(y,t). Whence we obtain:
KO(Tk_l(aj)a t, $), _'Eik(ta rk_l(x)) and _'El(ta l‘),

i.e. l2 . l1 = {3]{: — 1}.
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Case 6. 1 = 3k.

We have: Ko(r*~!(z),t,z) and Ey(t,z).

Let Iy = 3k, i.e. Ko(r*~1(t),y,t) and Fy(y,t). Whence we obtain: Ko(r*~(z),t, ) and
Er(y,z), i.e. Iy - 1o = {3k}.

Thus, we established that the algebra B3 M, is commutative and strictly 5-deterministic
for every k > 2.
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Kynuemos B.III., Cynomraros C.B. JIOHECTIK PAHT'ICI 2 ©JICI3 HUKJIAIK M-
HUMAJIZIBI TEOPUAJIAP YIIIH BMHAPJIBIK OKITAYJ/IAY ®OPMVYJIAJIAPHI AJI-
I'EBPAJIAPBIH/TA

Byn )kywmbic IHKIJK peTTenreH 9/ci3 MUK MIHAMAJIBI KYPBIIBIMIAPAbI 3epTTEyTe
apuasgraH. Hukamik TopTinTiH eH KapamailbIM MBICAJIBI — COHFBI HYKTeJepi 6ap ChI3BIKTHIK,
TOPTIN, OHJA €H VJIKEH 3JIeMEHT eH KimrMmeH colikecreHmipisemi. Tarnr 6ip Mbicas, ImeHOep
OoifbIMeH KYpy Ke3iHgze maiiga 0osaTbiH TopTin. [IUKIIIK peTTesreH KypbLIbIM, erep OHBIH
dopMyTaIbIK IIMKi *KUBIHIAPBIHBIH K3 KEJITeH] JTOHeC *KUBIHIAP MEH HYKTEJIEPIiH aKbIPJIbI
GipJiecTiri 6oJica, OHBI 9JICI3 MUKJJIIK MUHAMAJIIBI el aTaiiabl. Teopust oJIci3 MUKJIIIK MIHHI-
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MaJIIBI eIl aTajiaabl, erep OHBIH OAPJIBIK MOMEIbIAEP] 9JICI3 MUKIIIK MIHUMAJIAL bosca. Bi3
KYPBLIBIMHBIH, AHBIKTAJIATHIH asKTaJIybIHA OH-MOHOTOH,IbI (PYHKIIUSIFA 1€ YKOHE KYPbLIBIMHBIH
HEri3ri KUBIHBIH JIOHEC KJIACCTAPBIHA MIEKTEYJI CAaHbIHa 06JIeTIH TPUBUAJIIHI €MeC SKBUBAJICHT-
TiK KaTblHaC Oap TPUBUAJILI aHBIKTAJIATBHIH TYUBIKTAJIYbIHA He IOHECTIK PaHrici 2 caHayJIbl
KaTerOPUSIJIbIK 1-0TTe i IPUMUTHBTIK eMeC 9JICI3 IUKJ/IIIK MUHIMAJI b TEOPUsIaphl YITiH Ou-
HapJIBbIK OKIayJiay popMy/IaJapbIHbIH aJIredpachlH CUIIaTTaARMBL3.

Tyiiia ce3nep: Obunap/bik, dhopmynanap aaredpacol, Ng-KaTeropusiiblK TEOPHUs, 9JICI3
MUKJIIK MUHEMAJIIBLIBIK, IIUKJIIIK PeTTeJreH KYPbLIbIM, JIOHECTIK PaHIiCI.

Kynmemos B.111., Cynomnaros C.B. Ob AJI'EBPAX BUHAPHBIX U30JIMPYOMIINX
OOPMVYJI J1JId CJIABO HUKJINYECKN MUHUMAJIBHBIX TEOPUIT PAHT'A BEI-
I[TYKJIOCTH 2

JlanHnast paboTa MOCBAIIEHA UCCIEIOBAHAIO CJIa00 IMUKINICCKH MUHUMAJbHBIX TUKJIAYIE-
CKU YIIOPSIIOYEHHBIX CTPYKTYp. lIpocreiimmuit mpuMep MUKINIECKOTO MOPSIKA — 9TO JIMHEH-
HBI TOPSJIOK C KOHIEBBIMU TOYKAME, B KOTOPOM HAMOOJIBIINI 3JIEMEHT OTOXKJICCTBUIN C HAU-
MeHbITUM. JIpyroit mpuMep — 9TO MOPSIIOK, BOSHUKAIONINI IIpu 00x0e okpyxkHocTu. [[ukim-
YeCKU yHOPS0UeHHAs CTPYKTYPa Ha3bIBAETCS CJIa00 NMUKJIMIeCKH MIHUMAJILHOMI, ecyu Jiiboe
ee HOpMYJIbHOE TOJIMHOYKECTBO SIBJISIETCST KOHEUHBIM OOLEIUHEHUEM BBIMYKJ/IBIX MHOXKECTB U
Touek. Teopust HA3BIBAETCS €00 MUKIMIECKH MUHUMAJIbHO, €CJIN BCE €€ MOJIEN SBJISIOTCS
c1a00 TMUKJINIECKH MUHIMAJIBHBIMEU. OMUCHIBAIOTCS aredphl OMHAPHBIX M30IUPYIOMUX (Hhop-
MYJI JIJIsi CIETHO KATErOPUYHBIX 1-TPAH3UTUBHBIX HEIIPUMUTUBHBIX CJIa00 IMUKIUIECKU MIHU-
MAaJIBHBIX TEOPUil PAHTa BBIMYKJIOCTU 2 ¢ TPUBUAJIBHLIM OIPEIETUMBIM 3aMbIKAHUEM, UMEIO-
IUX MOHOTOHHYIO BIIPaBO (DYHKIIMIO B OIPEEIMMOE HOIOJTHEHNE CTPYKTYPhl U HE UMEIOITUX
HETPUBUAJILHOTO OTHOIIEHUsT SKBUBAJEHTHOCTH, PA30MBAONIEr0 OCHOBHOE MHOXKECTBO CTPYK-
TYPBI HA KOHEYHOE YHCJIO BBIIYKJIBIX KJIACCOB.

Kmrouesnre cioBa. anrebpa OunapHbIX GOpMyJI, Ng-KaTeropudHasi TeOpus, ciaabast MUK JIN-
JecKad MUHUMAJIbHOCTD, HUKJINYECKU YIIOPSJIOYEeHHAA CTPYKTYpPa, PAHT BBILYKJIOCTH.

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 6—21



