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Abstract. In this article, we obtain a theorem on a priori estimates for solutions of nonlinear equations
in a finite-dimensional space. This theorem is proved under certain conditions which are borrowed from
the conditions that are satisfied by finite-dimensional approximations of one class of nonlinear initial-
boundary-value problems. The main result establishes sufficient conditions for the existence of a solution
to A(u) = f , where A is a nonlinear operator. An example is given to illustrate the applicability of the
main result to nonlinear analysis and mathematical physics.
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1 Introduction and the origin of the problem

Many problems of mathematical physics, thanks to the law of energy conservation, allow us
to prove the existence of a solution that satisfies an energy estimate. The energy estimate in
the case where the number of spatial variables n is not less than 3, usually does not allow us
to use perturbation theory.

Solutions that do not allow (or rather cannot allow) us to use perturbation theory are
called (usually) “weak” solutions.

The ability to use perturbation theory is very important in mathematical physics prob-
lems. Therefore, in the theory of differential equations, there is great interest in the existence
of a solution that allows us to use perturbation theory.
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A solution to an equation that allows us to use perturbation theory is mathematically
called a “strong” solution (not always).

Many problems of mathematical physics can be written in “restricted notation” (in the
form of an integral equation), usually of the following form

f(u) = u+ L(u) = g, (1)

where L(u) is the nonlinear part. This equation is often studied in the metric of some Banach
or Hilbert space H.

When moving to an “abbreviated notation” the energy estimate, usually performed for
problems in mathematical physics, will turn into an a priori estimate of the following form

∥G(u)∥ ≤ C · ∥u+ L(u)∥ = C∥g∥, (2)

where C is a constant number independent of u ∈ H, and G is a completely continuous
operator in H.

An a priori estimate (2) usually does not allow the use of perturbation theory. Therefore,
it becomes necessary to obtain an estimate of the following form

∥u∥ ≤ φ (∥f(u)∥), (3)

where φ(·) is a continuous function on [0,∞).
The presence of an estimate of the form (3), as a rule, opens the possibility of using

perturbation theory (with an appropriate choice of the space H).
A very important problem is the problem of the existence of a sequence of finite-dimensional

approximations of the problem (1) (more precisely, approximations of the operation u+L(u)):

f1(·), f2(·), ... , fn(·), ... (4)

considered in the spaces

H1, H2, ... , Hn, ... , dim Hn = n, (5)

such that a priori estimates of the form (2) are satisfied and it is possible to obtain an estimate
similar to (3).

It is implied that Hn (n = 1, 2, ...) is a subspace of H and the metric Hn is the metric
induced from the metric of H.

The problem of describing the dynamics of an incompressible fluid, due to its theoretical
and applied importance, attracts the attention of many researchers.

This work is devoted to the problem of the existence and smoothness of solutions to
equations of mathematical physics [1].
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The works [2–4] provide a fairly complete analysis of the current state of the problem and
a review of the available literature, and propose methods to solve the problem. The articles [5–
13] are devoted to the study of the solvability in general of equations of mathematical physics,
the continuous dependence of the solution of a parabolic equation, and the smoothness of the
solution.

This work arose as a result of numerous attempts by the authors to solve the problem of
the existence of a strong solution to an equation of mathematical physics.

In this work, we obtain two theorems on a priori estimates of solutions to nonlinear
equations in a finite-dimensional Hilbert space. The work consists of four sections. The first
section is devoted to the introduction and origin of the problem. The second section provides
the notation used and the formulation of the main results. The third section provides a proof
of Theorem 1, which in the limit gives weak solvability of many problems of mathematical
physics. In the fourth paragraph, we prove Theorem 2, which in the limit allows us to establish
strong solvability of some problems of mathematical physics that admit perturbation theory.
The conditions of the theorems are such that they can be used in studying a certain class of
initial-boundary value problems to obtain strong a priori estimates in the presence of weak a
priori estimates.

2 The conditions used and the formulation of the results

Let us derive uniform estimates for nonlinear problems in a finite-dimensional space. The
equations under consideration are (usually) analogs of finite-dimensional approximations of
equations of mathematical physics written in “abbreviated notation”.

Throughout this section, H is a finite-dimensional real Hilbert space with a scalar product
⟨ · , · ⟩ and a norm ∥ · ∥.

We are interested in an equation of the following form

u+ L(u) = g ∈ H, (6)

where L(·) is a nonlinear continuous transformation, g is an element of the space H. The
solution u of problem (6) is sought in H.

We are focused on such finite-dimensional equations of the form (6) that are finite-
dimensional approximations of infinite-dimensional problems of the form (6) in an infinite-
dimensional Hilbert space. In this case, it will turn out to be very important to obtain
estimates that are independent of the approximation number and allow one to pass to the
limit and obtain an a priori estimate in the limit for solving the infinite-dimensional problem.

It will be very important to obtain estimates that do not depend on the number of
approximations, allowing one to pass to the limit and to obtain in the limit a priori estimate
for solving an infinite-dimensional problem. Infinite-dimensional problems of the form (6),
which we are focused on in what follows, are, as a rule, problems of mathematical physics
written in a limited form.
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Here and everywhere below, f(u) will mean an operation of the form

f(u) := u+ L(u). (7)

If ξ ∈ [0,+∞) is a parameter and the vector u(ξ) is a vector function continuously differ-
entiable with respect to the parameter ξ, then we assume that the vector-function L(u(ξ)), is
also continuously differentiable, as well as the expressions that arise from L(u) and f(u).

We introduce the notation Lu:

(L(u(ξ)))ξ = Lu(ξ)uξ(ξ). (8)

It is obvious that Lu (for each u ∈ H) will be a linear operator

Luv = (L(u(ξ)))|uξ=v. (9)

We have
(f(u(ξ)))ξ = uξ + Luuξ = (E + Lu)uξ.

In what follows, if u0, v0 ∈ H, then the vector Lu0v0 is understood as follows: we take a
continuously differentiable vector function u(ξ) such that

u|ξ=0 = u0, uξ(ξ)|ξ=0 = v0

and for Lu0v0 we take the vector

Lu0v0 = (L(u(ξ))ξ
∣∣
ξ=0

.

Here and everywhere in what follows, E is an identity operator.
We denote

Du = E + Lu, D∗
u = E + L∗

u, (10)

D∗
uf(u) = (E + L∗

u)f(u). (11)

Mua =
(
D∗

u(ξ)f(u(ξ))
)
ξ

∣∣∣∣ u(ξ) = u
uξ(ξ) = a

=Muuξ
∣∣
uξ=a

=Mua. (12)

Let us present the conditions used.
Condition U1: For operators L(·), Lu, L

∗
u, Du, D

∗
u the following conditions are sat-

isfied 
∥Mu −Mv∥H→H + ∥L(u)− L(v)∥+ ∥Lu − Lv∥H→H + ∥L∗

u − L∗
v∥H→H ≤

≤ ψ (∥u∥)ψ (∥v∥) ∥u− v∥,

∥Mvu∥+ ∥D∗
vu∥+ ∥Dvu∥ ≤ ψ (∥v∥) ∥u∥,

(13)
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where ∥ · ∥ = ∥ · ∥H , ψ(·) is a non-decreasing on [0,∞) positive continuous function.

Condition U2: There exist linear invertible operators T and Q such that

∥T∥ ≤ CT , ∥Q∥ ≤ CT , ∥T−1∥ <∞, ∥Q−1∥ <∞, (14)

and for any u ∈ H the inequalities hold

⟨Tu, L(u)⟩ ≥ 0, ⟨Tu, u⟩ ≥ ∥Qu∥2. (15)

In (14) CT is some fixed constant number.

In what follows, C or c (uppercase or lowercase, with or without indices) will denote con-
stant numbers (generally speaking, different in different places), independent of the adjacent
factors.

Theorem 1. Let condition U1 and condition U2 be satisfied. Then for any g ∈ H the
problem

f(u) = g (16)

has a solution u ∈ H, satisfying the estimate

∥Qu∥2 ≤ CT ∥g∥2, (17)

where Q is the operator from condition U2, and CT is the constant from condition U2.

The notations of the transformations f(u), L(u), the operators Lu·, Du·, Mu· (defined
for each u ∈ H, (see (6)–(11)) and their conjugates L∗

u, D
∗
u and Mu will be used without

reservations.
We will also introduce the following notations:

J(u) = ∥u∥2 exp
{
−∥f(u)∥2

}
, (18)

N(u) = D∗
uf(u)− γ(u)u . (19)

We often use the notations (18) and (19) without reservations, as well as the notations
that arise in the formulations of conditions U1 and U2, and the notations that arise in the
formulations of conditions U3 and U4 given below.

Condition U3: There exists an invertible operator G, such that

∥G∥H→H ≤ C0 <∞, ∥G−1∥ <∞ (20)

and for any u ∈ H the inequality

∥Gu∥2 ≤ d0 ∥f(u)∥2, (21)

Kazakh Mathematical Journal, 23:1 (2023) 6–14



Evaluation of solutions of one class of finite-dimensional nonlinear equations. I 11

where d0 > 0 is a constant.

Condition U4: If 0 ̸= u0 ∈ H, γ(u) > ∥u∥−2 and N(u) = 0, then strict inequalities
are satisfied

inf
{a}

⟨MuPua, Pua⟩ − γ(u)∥Pua∥2

∥Pua∥2
< 0 < sup

{a}

⟨MuPua, Pua⟩ − γ(u)∥Pua∥2

∥Pua∥2
, (22)

where Pua is an orthogonal projector.
The following theorem is true.
Theorem 2. If conditions U1, U3, and U4 are satisfied, then for any u ∈ H the a priori

estimate holds:
∥u∥2 ≤ C exp

{
∥f(u)∥2

}
. (23)

Note that the estimate (23) is satisfied if conditions U1, U3 and the following condition
U5 are satisfied.

Condition U5: There exist constant numbers c0, c1, m and a self-adjoint operator T,
such that if ∥u∥ ≥ 1, then the inequalities are satisfied

∥L(u)∥ ≥ c0 ∥Tu∥m, ∥u∥ ≤ c1 ∥u∥m. (24)

Remark 1. If the conditions of Theorem 1 are satisfied, that is, conditions U1 and U2
are satisfied, then condition U3 is also satisfied.

3 Proof of Theorem 1

The ways of proving theorems whose contents are similar to the statement of Theorem 1 are
well known, and we could limit ourselves to a reference to them. However, for the sake of
completeness of the presented results, we provide a proof of Theorem 1.

For the proof, we use one well-known technique (in a form convenient for us).
Let g ∈ H. Denote by M(g) the set of vectors

M(g) = {u ∈ H : ⟨Tu, u⟩ ≤ 16 ⟨Tg, g⟩}, (25)

where T is the operator from condition U2.
Assume that the equation u + L(u) = g has no solution u ∈ M(g). We define the

transformation

F (u) = − u+ L(u)− g√
⟨T (u+ L(u)− g), u+ L(u)− g⟩

4
√

⟨Tg, g⟩. (26)

Since the equation u+L(u) = g has no solution, then by virtue of condition U2 (see (15)),
the transformation F (·) is continuous. It is easy to see that this transformation transforms

Kazakh Mathematical Journal, 23:1 (2023) 6–14



12 Bakytbek D. Koshanov, Mukhtarbay Otelbayev, Abduhali N. Shynybekov

the set M(g) into itself. Therefore, by virtue of Browder’s fixed point theorem and the finite
dimensionality of H, the transformation F (·) has a fixed point u0 ∈M(g), that is,

F (u0) = u0. (27)

We apply the operator T to (27), and then scalar multiply the resulting equality by
u0 + L(u0)− g. Then, using (26), we obtain

−A :≡ −4
√
⟨Tg, g⟩

√
⟨T (u0 + L(u0)− g), u0 + L(u0)− g⟩ =

= ⟨Tu0, u0 + L(u0)− g0⟩ ≥ ⟨Tu0, u0⟩ − ⟨Tu0, g⟩ =

= ⟨Tu0, u0⟩ − 1
2 (⟨Tu0, g⟩+ ⟨u0, T ∗g⟩) .

(28)

In deriving (28) in the penultimate transition, (15) from condition U2 was used.
Since, according to condition U2, the inequality ⟨Tv, v⟩ ≥ ∥Qv∥2 is satisfied for any v ∈ H

and the operator Q is invertible, then the quantity ⟨Tu0, u0⟩ can be taken as the square of
the norm of the vector u0, and the quantity 1

2 (⟨Tu0, g⟩+ ⟨u0, T ∗g⟩) as the scalar product of
the vectors u0 and g in some real Hilbert space (provided by this norm). Therefore, we can
use the well-known Cauchy inequality and obtain the inequality

−A ≥ ⟨Tu0, u0⟩ − (ε−1⟨Tu0, u0⟩+ ε⟨Tg, g⟩) = ⟨Tu0, u0⟩(1− ε−1)− ε⟨Tg, g⟩. (29)

From (27) and (26) we have

⟨Tu0, u0⟩ = ⟨TF (u0), F (u0)⟩ = 16 ⟨Tg, g⟩.

From here and from (29) we obtain

−A ≥ [(1− ε−1)16− ε] ⟨Tg, g⟩.

Choosing here ε = 2, we obtain −A ≥ 6 ⟨Tg, g⟩.
Since the left-hand side of the inequality is a negative value, it contradicts the inequality

(15) from condition U2. This shows that equation u+ Tu = g has a solution u ∈M(g).
To solve the equation u+ L(u) = g, multiplying it scalarly by Tu, we have

⟨Tu, u⟩+ ⟨Tu,L(u)⟩ = ⟨Tu, g⟩ = 1

2
(⟨Tu, g⟩+ ⟨u, T ∗g⟩) .

Here on the right is the scalar product of the vectors Tu and g in some Hilbert space. Apply-
ing the well-known Cauchy inequality and taking into account the first inequality from (15)
condition U2, we obtain:

⟨Tu, u⟩ ≤ (⟨Tu, u⟩)1/2 (⟨Tg, g⟩)1/2 .
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From here
⟨Tu, u⟩ ≤ ⟨Tg, g⟩ ≤ ∥Tg∥∥g∥ ≤ CT ∥g∥2,

where CT is a constant from condition U2.
Now, from the second inequality (15) of condition U2 we obtain

∥Qu∥2 ≤ CT ∥g∥2.

Theorem 1 is proven.
Remark 2. Theorem 1 allows us to prove the existence of a “weak” solution to some

problems of mathematical physics. To prove the existence of a “strong” solution, which allows
us to use perturbation theory for some problems of mathematical physics, we need another
finite-dimensional theorem, which will be proved under conditions U1, U3, and U4.
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Қошанов Б.Д., Өтелбаев М., Шыныбеков А.Н. АҚЫРЛЫ ӨЛШЕМДI СЫЗЫҚТЫ
ЕМЕС ТЕҢДЕУЛЕРДIҢ БIР КЛАСЫНЫҢ ШЕШIМДЕРIН БАҒАЛАУ. I

Осы мақалада шектелген өлшемдi кеңiстiктегi сызықты емес теңдеулердiң шешiм-
дерiне арналған алдын ала бағалау теоремасы алынады. Бұл теорема сызықты емес
бастапқы-шектiк есептер класының шектелген өлшемдi жуықтаулары қанағаттандыра-
тын шарттардан алынған белгiлi бiр шарттарда дәлелденедi. Негiзгi нәтиже сызықты
емес оператор A берiлген A(u) = f теңдеуiнiң шешiмi бар болуына жеткiлiктi шарттар-
ды анықтайды. Негiзгi нәтиженi сызықты емес талдау мен математикалық физикада
қолдануға болатындығын көрсету үшiн мысал келтiрiледi.

Түйiн сөздер: дифференциалдық оператор, сызықтық емес теңдеу, шешiмнiң бар
болуы, шешiмнiң жалғыздығы, шешiмнiң априорлық бағалауы.

Кошанов Б.Д., Отелбаев М., Шыныбеков А.Н. ОЦЕНКА РЕШЕНИЙ ОДНОГО
КЛАССА КОНЕЧНОМЕРНЫХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. I

В данной статье получена теорема об априорных оценках решений нелинейных урав-
нений в конечномерном пространстве. Доказана теорема об априорной оценке реше-
ния, что при условиях, заимствованных из условий, которые выполняются для конеч-
номерных аппроксимаций одного класса нелинейных начально-краевых задач. Основ-
ной результат устанавливает достаточные условия существования решения уравнения
A(u) = f , где A — нелинейный оператор. Приведён пример, иллюстрирующий примени-
мость основного результата в нелинейном анализе и математической физике.

Ключевые слова: дифференциальный оператор, нелинейное уравнение, существо-
вание решения, единственность решения, априорная оценка решения.
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