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Abstract. We consider boundary value problems of thermal conductivity on a linear thermal graph, which
can be used to study various structures under conditions of thermal heating (cooling). Here, based on the
generalized function method, a unified technique has been developed for solving boundary value problems
of thermal conductivity, typical for engineering applications. Generalized solutions to nonstationary and
stationary boundary value problems of heat conduction on an edge and on a thermal linear graph
are constructed under various boundary conditions at the ends of the graph and generalized Kirchhoff
conditions at its node. Using the properties of the Fourier transformant of the fundamental solution,
regular integral representations of solutions to boundary value problems are obtained in analytical form.
The solutions obtained make it possible to simulate heat sources of various types, including using singular
generalized functions. The method of generalized functions presented here makes it possible to solve a
wide class of boundary value problems with local and connected boundary conditions at the ends of the
edges of the graph and different transmission conditions at its nodes.

Keywords. Thermal conductivity, generalized functions, fundamental and generalized solution, Fourier
transform, resolving boundary equations, linear graph.

1 Introduction

Graph theory has wide applications in subjects such as economics, logistics, sociology, opti-
mal control, and navigation [1–2]. The properties of graphs are also actively used to solve
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boundary value problems (BVPs) on network-like structures, e.g., oil pipelines, gas pipelines,
and electrical networks [3–10]. With the development of mechanical engineering, complex
multi-link rod structures operating under various thermal conditions began to be actively
used. They are widely used in structural mechanics, mechanical engineering, robotics, and
many other fields.

Mathematical modeling of the thermodynamics of rod structures and the creation of
information technologies based on it is one of the more effective and inexpensive methods for
researching and designing such systems. An urgent scientific and technical task is to study the
thermal state of network systems for various purposes under thermal influences, taking into
account their construction and thermal influences, including impact types. This is necessary
to analyze the strength and reliability of such objects, determine safe operating modes, and
prevent disasters.

Here boundary value problems are considered on the linear multilink thermal graph (Fig.
1), which can be used to study various mesh structures under conditions of volume and thermal
heating (cooling).

The novelty of the present work lies in the fact that a generalized function method is used
to solve boundary value problems, leading to a differential equation solution with a singular
right-hand side [11]. The solution is constructed as the convolution of the Green’s function
of the equation with the appropriate right-hand side. To determine the unknown boundary
values of the solution and its derivatives on each segment, resolving boundary equations
are constructed at the ends, employing the asymptotic properties of Green’s function and its
derivative at zero. To construct a closed system of equations, the obtained algebraic equations
for each edge of the graph are supplemented with transmission conditions at the node and
linear boundary conditions at its ends. These conditions can be either locally or not locally
connected.

A resolving system of equations in the space of Fourier transforms over time and Fourier
transforms of temperature on each link of the graph are constructed, which give a solution
to stationary boundary value problems with oscillations with a fixed frequency. The inverse
Fourier transform is used to construct the original. The obtained solutions give analytical
formulas for calculating the temperature of such structures under thermal heating conditions,
and can be used in the design of heating networks, as well as for solving boundary value
problems in environments stratified by thermal graphs.

2 Statement of the boundary value problem on thermal linear graphs

We consider a thermal linear graph which contains N edges (Aj−1, Aj) of the length Lj , where
j = 1, 2, . . . , N (Fig. 1). On each edge Sj =

{
x ∈ R1 : 0 ≤ x ≤ Lj

}
there is its own coordinate

system (xj , t) with the origin at the point Aj−1, that is, xj = 0 at Aj−1 and xj = Lj at Aj .
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The temperature θj(x, t) satisfies the heat conduction equation at Sj :

∂θj
∂t

− κj
∂2θj
∂x2

= Fj(x, t). (1)

Here κj is the thermal diffusivity coefficient on the j-th segment, Fj(x, t) describes the action
of the heat source, θj1(t) and θj2(t) are the temperatures at the ends of the j-th edge.

Figure 1. Linear graphs

The initial conditions at t = 0 for the temperature of a graph are known:
(Cauchy conditions)

θj(x, 0) = θ0
j(x), 0 ≤ x ≤ Lj , t = 0, (2)

θj(0) = θ0, (3)

where θ0j(x) ∈ C2(R+) for each j. Here we consider the two boundary value problems (BVP),
R1

+ = {t ∈ [0,∞)}
Dirichlet conditions (BVP1). Temperature values are known at the ends of the graph:

θ11(t) = θ1 (0, t) = ϑ1(t), t ≥ 0, ϑ1(t) ∈ C(R1
+),

θN2 (t) = θN (LN , t) = ϑ2(t), t ≥ 0, ϑ2(t) ∈ C(R1
+).

(4)

Here and further

θ1j (t) = θj(0, t), q1j (t) = ∂xθj(0, t), θ
2
j (t) = θj(LJ , t), q2j (t) = ∂xθj(LJ , t).

Neumann conditions (BVP 2). The values of the heat flows are known at the ends of the
graph:

κ1 q
1
1 (t) = κ1q1(0, t) = χ1(t), t ≥ 0, χ1(t) ∈ C(R1

+),
κNqN2 (t) = κNqN (LN , t) = χ2(t), t ≥ 0, χ2(t) ∈ C(R1

+).
(5)
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The following continuity conditions and generalized Kirchhoff conditions are specified in
the common node A0 of the graph.

Transmission conditions:

θj2 (t) = θj+1
1 (t), j = 1, ..., N − 1, t ≥ 0,

θ11 (0) = ϑ1(0),
θN2 (0) = ϑ2(0),

(6)

κjq
j
2(t) = κj+1q

j+1
1 (t) +Qj(t), j = 1, ..., N − 1, t ≥ 0. (7)

Here
θj1(t) = θj(0, t), qj1(t) =

∂θj
∂x

∣∣∣∣
x=0

, qj2(t) =
∂θj
∂x

∣∣∣∣
x=Lj

,

θ0 is the initial temperature at the common node A0.
We need to find the solutions of these two BVP on the heat linear graph by known

Qj(t), where j = 1, . . . , N , ϑ1(t) and ϑN (t) (Dirichlet problem) or χ1(t) and χN (t) (Neumann
problem).

3 Statement of boundary value problem on a segment of a graph

At first we construct a solution of some boundary value on one graph segment. Let consider
θ(x, t) on [0, L], which is the solution of heat equation:

∂θ

∂t
− κ

∂2θ

∂x2
= F (x, t). (8)

Initial conditions: the temperature is known at t = 0:

θ(x, 0) = θ0(x), θ0(x) ∈ C {0 ≤ x ≤ L} (9)

Here we consider solutions to BVPs with local and associated boundary conditions.
Local boundary conditions: {

(α1θ1 + β1Π1(t))|x=0 = G1(t),
(α2θ2 + β2Π2(t))|x=L = G2(t).

(10)

where αj , βj arbitrary constants, θj(t), Πj(t) = −k ∂θ
∂x

∣∣
x=xj

(j = 1, 2) are the temperature
and heat flow at ends of the segment in points: x = x1 = 0, x = x2 = L. Gj(t) are known
functions which are integrated functions on R1

+ : Gj(t) ∈ L1(R
1
+).

Connected boundary conditions:

α1jθ1(t) + β1jΠ1(t) + α2jθ1(t) + β2jΠ2(t) = Dj(t), j = 1, 2. (11)
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Conditions for matching initial and boundary conditions:

θ1(t) = θ(0, t), θ2(t) = θ(L, t), θj(t) ∈ C(R+
1 ).

It is assumed that all functions defining boundary conditions also belong to Lebesgue
space L1. Relations (11) contain all classical formulations of heat BVPs if we take some
αij = 0, βij = 0. We find solutions to BVPs using the Generalized Function Method [14].

4 Generalized solution of boundary value problems on an graph segment. Gen-
eralized function method

To determine the solution on the graph, at first, we consider the BVP on the graph segment
by using the general function method. For this, we consider the BVP for the heat equation
on the segment [0, L] in the space S′(R2) = {f̂(x, t), (x, t) ∈ R2} of generalized functions of
slow growth [15]. To do this, we introduce a regular generalized function (we mark it with a
cap):

θ̂(x, t) =

{
θ(x, t), (x, t) ∈ D−

0, x /∈ D− ,

where θ(x, t) is the solution of BVP, D− = [0, L]× [0,∞). It can be represented in the form

θ̂(x, t) = θ(x, t)H(L− x)H(x)H(t).

Here H(x) is the Heaviside step function.
To construct the equation for θ̂(x, t) in S′(R2), we calculate the generalized derivatives

of θ̂(x, t):

∂θ̂

∂x
=

∂θ

∂x
H(L− x)H(x)H(t)− θ2(t)δ(L− x)H(t) + θ1(t)δ(x)H(t),

∂2θ̂

∂x2
=

∂2θ

∂x2
H(L− x)H(x)H(t)− q2(t)δ(L− x)H(t) + q1(t)δ(x)H(t)+

+θ2(t)δ
′(L− x)H(t) + θ1(t)H(t)δ′(x),

∂θ̂

∂t
=

∂θ

∂t
H(L− x)H(t) + θ0(x)H(L− x)δ(t),

where δ (x) is a singular generalized δ-function, qj(t) = ∂θ
∂x

∣∣
x=xj

, j = 1, 2.

The equation (7) in S′(R2) has the following form for θ̂(x, t):

∂θ̂

∂t
− κ

∂2θ̂

∂x2
= F̂2(x, t) + κq2(t)δ(L− x)H(t)− κq1(t)δ(x)H(t)−

− κθ2(t)δ
′(L− x)H(t)− κθ1(t)δ

′(x)H(t) + θ0(x)H(L− x)H(x)δ(t). (12)
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Note that the right side of this equation includes all initial and boundary temperatures θj(t)
and heat flows Πj(t) = κqj(t) (j=1, 2).

Throughout the paper, we denote the partial derivative ∂U
∂x by U,x(x, t).

According to the theory of generalized functions [15], the solution of (12) can be rep-
resented as a convolution of the fundamental solution of the heat equation (8) with the
right-hand side of this equation:

θ̂(x, t) = F̂2(x, t) ∗ U(x, t) + κq2(t)H(t) ∗
t
U(L− x, t)−

− κq1(t)H(t) ∗
t
U(x, t)− κθ2(t)H(t) ∗

t
U,x(L− x, t)−

− κθ1(t)H(t) ∗
t
U,x(x, t) + θ0(x)H(L− x)H(x) ∗

x
U(x, t). (13)

Here, U(x, t) is the fundamental solution of the heat equation (1) by F (x, t) = δ(x, t) =
δ(x)δ(t). It decays at ∞ and has the form [15]:

U(x, t) =
1√
2πκt

exp(−x2/4κt)H(t). (14)

We denote F̂ (x, t) = F (x, t)H(x)H(L− x)H(t). If it is a regular function, then relation
(13) can be represented in the next integral form:

θ(x, t)H(L− x)H(x)H(t) =

= H(t)

t∫
0

dτ

+∞∫
−∞

U (x− y, t− τ)F2(y, τ)dy + κH(x)H(t)

t∫
0

q2(t− τ)U(L− x, τ)dτ−

− κH(L− x)H(t)

t∫
0

U(x− y, t− τ)q1(τ)dτ − κH(x)H(t)

t∫
0

θ2(t− τ)U,x(L− x, τ)dτ−

− κH(L− x)H(t)

t∫
0

U,x(x, t− τ)θ1(τ)dτ +

L∫
0

U(x− y, t)θ0(y)H(L− y)H(y)dy. (15)

Formula (15) determines the temperature inside a segment by known temperature and
heat flows at its ends and is very useful for engineering applications. However, for correctly
posed boundary value problems, out of 4 boundary functions on the right side of formula
(15), only 2 are known. To determine two unknown boundary functions, resolving boundary
equations should be constructed using boundary conditions at the ends of the segment.
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5 Solving boundary value problem in Fourier transformation space in time

To construct the resolving system of equations, we use Fourier transformation in time:

θ̄(x, ω) = F
[
θ̂(x, t)

]
= H(x)H(L− x)

∞∫
0

θ(x, t)eiωtdt,

θ̂(x, t) =
1

2π

∞∫
−∞

θ̄(x, ω)e−iωtdω.

(16)

To define the Fourier transform of the generalized solution (11) we use the property of
Fourier transform of convolution [15]:

θ̂(x, ω) = F̄2(x, ω) ∗
x
Ū(x, ω) + θ0(x)H(L− x)H(x) ∗

x
Ū(x, ω)+

+ κq̄2(ω)H(x)Ū(L− x, ω)− κq̄1(ω)H(L− x)Ū(x, ω)−

− κθ̄2(ω)H(x)Ū ,x(L− x, ω)− κθ̄1(ω)H(L− x)Ū ,x(x, ω). (17)

Here, a variable under the sign of convolution
(
∗
x

)
shows the convolution is applied only

over the variable x. The integral representation of Equation (17) has the form:

θ̄(x, ω)H(L− x)H(x)H(ω) =

= H(x)

L∫
0

Ū (x− y, ω)F2(y, ω)dy + κH(x)

L∫
0

Ū(x− y, ω)θ0(y)dy+

+ κq̄2(ω)H(x)Ū(L− x, ω)− κq̄1(ω)H(L− x)Ū(x, ω)−

− κθ̄2(ω)H(x)Ū ,x(L− x, ω)− κθ̄1(ω)H(L− x)Ū ,x(x, ω). (18)

Fourier transform of Green’s function of the heat equation is equal to

Ū(x, ω) = −sin (k |x|)
2k κ

, (19)

where k =
√
iω κ−1 = eiπ/4

√
ω κ−1 = (1 + i)

√
ω
2κ . It satisfies the equation:

d2Ū

dx2
+ i ω κ−1Ū = δ(x).

Its derivative has the gap in point x = 0 and equal to

Ū ,x(x, ω) = −sgnx

2κ
cos(κ |x|), sgnx =

{
1, x > 0,

−1, x < 0.
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There are the following symmetry conditions:

Ū(x, ω) = Ū(−x, ω), Ū ,x(±0, ω) = ∓ 1

2κ
. (20)

We use these properties for solving BVP.

6 Resolving equations of boundary value problems

To find unknown boundary functions, we pass in relation (18) to the limit at x → 0+ε, where
ε > 0:

θ̄1(ω) = lim
ε→0

θ̄(0 + ε, ω) = F̄ (x, ω) ∗
x
Ū(x, ω)

∣∣
x=0

+ θ0(x)H(L− x)H(x) ∗
x
Ū(x, ω)

∣∣
x=0

+

+κq̄2(ω)H(x)Ū(L− 0− ε, ω)− κq̄1(ω)H(L− x)Ū(0 + ε, ω)−

−κθ̄2(ω)H(x)Ūx(L− 0− ε, ω)− κθ̄1(ω)H(L− x)Ū ,x(0 + ε, ω).

Next, we move the last term to the left side and take into account the right limit of Ū ,x(x, ω)
at zero (20). We obtain the next equation on the left end of the segment:

1

2
θ̄1(ω) = F̄ (x, ω) ∗

x
Ū(x, ω)

∣∣
x=0

+ θ0(x)H(L− x)H(x) ∗
x
Ū(x, ω)

∣∣
x=0

+

+ κq̄2(ω)H(x)Ū(L, ω)− κq̄1(ω)Ū(0, ω)− κθ̄2(ω)H(x)Ū ,x(L, ω) (21)

Similarly, we consider the limit at x → L− ε, ε > 0.

θ̄2(ω) = lim
ε→0

θ̄(L− ε, ω) = F̄ (x, ω) ∗
x
Ū(x, ω)

∣∣
x=L

+ θ0(x)H(L− x)H(x) ∗
x
Ū(x, ω)

∣∣
x=L

−

− κq̄1(ω)Ū(L− ε, ω)− κθ̄1(ω)Ū ,x(L− ε, ω)− κθ̄2(ω)H(x)Ū ,x(ε, ω) (22)

We move the last term to the left side, and obtain the second boundary equation:

1

2
θ̄2(ω) = F̄ (x, ω) ∗

x
Ū(x, ω)

∣∣
x=L

+ θ0(x)H(L− x)H(x) ∗
x
Ū(x, ω)

∣∣
x=L

−

− κq̄1(ω)Ū(L, ω)− κθ̄1(ω)Ū ,x(L, ω) (23)

We formulate the obtained results in the form of this theorem.

Theorem 1. The Fourier time transformants of boundary functions of boundary value prob-
lems (7)–(10) satisfy the system of linear algebraic equations of the form:
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[
0, 5 0

κŪ,x(L, ω) κŪ(L, ω)

] [
θ̄1(ω)
q̄1(ω)

]
+

+

[
κŪ,x(L, ω) −κŪ(L, ω)

0, 5 0

] [
θ̄2(ω)
q̄2(ω)

]
=

[
Q̄1(0, ω)
Q̄2(L, ω)

]
, (24)

where

Q̄1(0, ω) = F̄ (x, ω) ∗
x
Ū(x, ω)

∣∣
x=0

+ θ0(x)H(L− x)H(x) ∗
x
Ū(x, ω)

∣∣
x=0

, (25)

Q̄2(L, ω) = F̄ (x, ω) ∗
x
Ū(x, ω)

∣∣
x=L

+ θ0(x)H(L− x)H(x) ∗
x
Ū(x, ω)|x=L. (26)

The resulting system (20) makes it possible to solve BVP for any given two boundary
functions of temperature and heat flow at the ends of a segment of four boundary functions.
To solve all temperature BVPs, it is convenient to consider the extended system of equations
in the form of a matrix equation:

A(ω) · B(ω) = C(ω), (27)

where

A(ω) =


0, 5 0 κŪ,x(L, ω) −κŪ(L, ω)

κŪ,x(L, ω) κŪ(L, ω) 0, 5 0
a31 a32 a33 a34
a41 a42 a43 a44

 ,

B(ω) =
(
θ̄1(ω), q̄1(ω), θ̄2(ω), q̄2(ω)

)
,

C(ω) = (Q̄1(0, ω), Q̄2(L, ω), b̄3(ω), b̄4(ω)).

The last two equations in the system (27) are determined by boundary conditions at the
ends of the segment, which are known for BVP:[

a31 a32
a41 a42

] [
θ̄1(ω)
q̄1(ω)

]
+

[
a33 a34
a43 a44

] [
θ̄2(ω)
q̄2(ω)

]
=

[
b̄3(ω)
b̄4(ω)

]
. (28)

By given coefficients aij and right-hand side bi(ω), we have four equations (27) for definition
of four boundary functions. The solution of Eqs (27) has the form:

B(ω) = A−1(ω)× C(ω), (29)

where A−1(ω) is the inverse matrix of A(ω).
So, all boundary functions are defined; therefore, the Fourier transform (17) for solving

the boundary value problem is constructed. Using the inverse Fourier transform (16), we
obtain the original θ(x, t) on the segment [0, L].

We use the solution (17) and Eqs (24) for constructing the solution of BVP on the linear
graph.
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7 Algebraic equations for determining unknown boundary functions on a heat
linear graph

We return to the consideration of BVP for the heat equation on a heat linear graph (Fig.
1). On each segment Lj of the graph, we have the system of linear algebraic equations for
determining four boundary functions:

(
1 0 − cos(kjLj)

sin(kjLj)
kj(ω)

− cos(kjLj) − sin(kjLj)
kj(ω)

1 0

)
θ̄j1(ω)

q̄j1(ω)

θ̄j2(ω)

q̄j2(ω)

 =

(
F̄ j
1 (ω)

F̄ j
2 (ω)

)
,

kj(ω) = (1 + i)
√

ω
2κj

, j = 1, ..., N.

(30)

Here, j denotes the number of the corresponding graph segment, and F̄ j
1 (ω) = 2Q̄j

1(0, ω),
F̄ j
2 (ω) = 2Q̄j

2(L, ω). So, we have 2N equation for the determination of 4N boundary functions
at every edge: B(ω) =

(
θ̄11, q̄

1
1, θ̄

1
2, q̄

1
2, ......, θ̄

N
1 , q̄N1 , θ̄N2 , q̄N2

)
. Also, we have 2 conditions on the

ends of the graph (4) or (5) and 2(N − 1) transmission conditions at the node points of
this graph (6). So we have the full system 4N equations for determination of 4N boundary
functions at every edge.

Theorem 2. Resolving system of equations of Dirichlet boundary value problem (2), (4), (6)
on a heat linear graph with N different segments has the form:

Λ1(ω)×B(ω) = C(ω), (31)

Resolving system of equations of Neumann boundary value problem (2), (4), (6) on a heat
linear graph with N different segments has the form:

Λ2(ω)×B(ω) = C(ω), (32)

Here the matrices Λ1(ω), Λ2(ω) have the following dimensions 4N × 4N .
The first 2N lines along the diagonal Λ1(ω), Λ2(ω) contain the connection matrices (30)

of unknown boundary functions of edges. The remaining elements are zero:

{Λij} =


Λ1 (ω) O2×4 O2×4 ...
O2×4 Λ2 (ω) O2×4 ...
O2×4 ... ... ...
O2×4 O2×4 O2×4 ...

.

... ... ... O2×4

... ... ... O2×4

... ... ... O2×4

... ... ... ΛN (ω)

 ,

i = 1, ..., 2N, j = 1, ..., 4N.
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Here

Λj (ω) =

(
1 0 − cos(kjLj)

sin(kjLj)
kj(ω)

− cos(kjLj) − sin(kjLj)
kj(ω)

1 0

)
,

O2×4 =

(
0 0
0 0

0 0
0 0

)
.

The next N − 1 rows of the matrices Λ1(ω), Λ2(ω) contain the continuity conditions (6)
at node points

{Λij} =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

−1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ,

i = 2N + 1, ..., 3N, j = 1, ..., 4N

The next N − 1 rows of these matrices contain the conditions (7) at node points:

{Λij} =


0 0 0 κ1
0 0 0 0
0 0 0 0
0 0 0 0

0 −κ2 0 0
0 0 0 κ2
0 0 0 0
0 0 0 0

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

0 0 0 0
0 0 0 0
0 0 0 0
0 −κN 0 0

 ,

i = 3N − 1, ..., 4N − 2, j = 1, ..., 4N.

The last two rows of the matrix are the boundary conditions at the ends of the graph.
For the Dirichlet problem, this is condition (4):

{Λij} =

{
1 0
0 0

0 0
0 0

... ...

... ...
... ...
... ...

0 0
0 0

0 0
1 0

}
,

i = 4N − 1, 4N ; j = 1, ..., 4N

For the Neumann problem, this is condition (5):

{Λij} =

{
0 κ1
0 0

0 0
0 0

... ...

... ...
... ...
... ...

0 0
0 0

0 0
0 κN

}
,

i = 4N − 1, 4N ; j = 1, ..., 4N

Theorem 4 follows from Theorem 3.
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Theorem 3. The solution to boundary value problems (1)–(6) on the thermal graph has the
form:

θ̄j(xj , ω)H(L− xj)H(xj) =

= H(xj)

Lj∫
0

Ū (xj − y, ω)F j
2 (y, ω)dy + κjH(xj)

L∫
0

Ūj(xj − y, ω)θj0(y)dy+

+ κj q̄
j
2(ω)H(x)Ūj(Lj − xj , ω)− κj q̄

j
1(ω)H(Lj − xj)Ūj(xj , ω)−

− κj θ̄
j
2(ω)H(xj)Ūj ,x(Lj − xj , ω)− κj θ̄

j
j,j(ω)H(Lj − xj)Ūj ,xj (xj , ω). (33)

Here
(
θ̄11(ω), q̄

1
1(ω), θ̄

1
2(ω), q̄

1
2(ω), ......, θ̄

N
1 (ω), q̄N1 (ω), θ̄N2 (ω), q̄N2 (ω)

)
= B(ω), where B(ω) are

the solution of resolving system equations:
for Dirichlet problem: B(ω) = Λ1−1(ω)× C(ω),
for Neumann problem: B(ω) = Λ2−1(ω)× C(ω).

So we defined the Fourier transformant of the solution of BVPs on the thermal graph.
Then by using the formula of inverse Fourier transformations (16) we calculate the original
solution—-the temperature at every point of the graph. So, both BVPs have been solved.

Conclusion

Using the method of generalized functions, we solved the boundary value problems of
thermal conductivity on the thermal linear graph, which can be used to study various network-
like structures under conditions of thermal heating (cooling). A unified technique has been
developed for solving various boundary value problems typical for practical applications.

The action of heat sources can be modeled by both regular and singular generalized
functions under various boundary conditions at the ends of the graph. The obtained regular
integral representations of generalized solutions make it possible to determine the temperature
and heat flows on each element of the graph, at any point of it, for stationary oscillations
with a constant frequency and in the case of periodic oscillations.

For nonstationary processes, performing the inverse Fourier transform in time, we obtain
the original solution in the original space-time. The construction of the original depends on
the boundary conditions and the type of functions that determine them and should be con-
sidered separately for a specific boundary value problem. The generalized function method
presented here makes it possible to solve a wide class of boundary value problems with local
and connected boundary conditions at the ends of the edges of the graph and various trans-
mission conditions at its nodes and can be extended to network structures of very different
types. It distinguishes this method from all others that are used to solve similar problems.

It should be noted that if we change the transmission condition (6), setting Qj(t) = 0
and q2j (t) = q1j+1(t), i.e. introduce the continuity condition of the derivatives with respect to
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x at the nodes of the linear graph, then the solution to this problem for the heat equation
with discontinuous coefficients is also constructed by this method. Only in the rows of the
matrix of the resolving system of equations that contain this transmission condition, should
we put 1 instead of κj . The issues of the correctness of setting such problems for parabolic
equations with discontinuous coefficients on a certain class of functions were considered in
[16], [17], [18].

In [19], a boundary value problem for the heat equation with a piecewise constant thermal
conductivity coefficient with one discontinuity point under homogeneous boundary conditions
with the condition of equality of heat fluxes at the discontinuity point was considered.

The generalized function method presented here makes it possible to solve a wide class
of boundary value problems with local and connected boundary conditions at the ends of the
edges of the graph and various transmission conditions at its node and can be extended to
network structures of very different types. It distinguishes this method from all others that
are used to solve similar problems.

The proposed method applies to a wide range of BVPs, including those on mesh struc-
tures.
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Айнакеева Н.Ж., Алексеева Л.А., Приказчиков Д.А. Жылулық теңдеу үшiн Дирихле
және Нейман есептерi сызықтық көп буынды жылу графтары және олардың шешiмдерi

Жылулық қыздыру (салқындату) жағдайында әртүрлi құрылымдарды зерттеу үшiн
пайдаланылуы мүмкiн сызықтық жылулық граф бойынша жылу өткiзгiштiктiң шека-
ралық есептерi қарастырылады. Мұнда жалпыланған функциялық әдiс негiзiнде ин-
женерлiк қолданбаларға тән жылу өткiзгiштiктiң шекаралық есептерiн шешудiң бiры-
ңғай әдiстемесi әзiрлендi. Жиекте және жылу сызығының графында жылу өткiзгiштiк-
тiң стационарлы емес және стационар шекаралық есептерiнiң жалпыланған шешiмдерi
графтың шеттерiнде әртүрлi шекаралық шарттарда және оның түйiнiнде жалпыланған
Кирхгоф шарттарында құрастырылады. Негiзгi шешiмнiң Фурье түрлендiрушiсiнiң қа-
сиеттерiн пайдалана отырып, аналитикалық түрде шекаралық есептердiң шешiмдерiнiң
тұрақты интегралдық бейнелерi алынады. Алынған шешiмдер әртүрлi типтегi жылу көз-
дерiн модельдеуге мүмкiндiк бередi, соның iшiнде сингулярлы жалпыланған функция-
ларды пайдаланады. Мұнда келтiрiлген жалпыланған функциялар әдiсi графтың шет-
терiнiң шеттерiндегi жергiлiктi және байланысқан шекаралық шарттармен және оның
түйiндерiндегi әртүрлi берiлу жағдайларымен шекаралық есептердiң кең класын шешуге
мүмкiндiк бередi.

Түйiн сөздер: жылу өткiзгiштiк, жалпыланған функциялар, iргелi және жалпыла-
ма шешiм, Фурье түрлендiруi, шекаралық теңдеулердi шешу, сызықтық граф.

Айнакеева Н.Ж., Алексеева Л.А., Приказчиков Д.А. Задача Дирихле и Неймана для
уравнения теплопроводности линейных многозвенных тепловых графов и их решения

Рассматриваются краевые задачи теплопроводности на линейном тепловом графе,
которые могут быть использованы для исследования различных конструкций в усло-
виях теплового нагрева (охлаждения). Здесь на основе метода обобщенных функций
разработана единая методика решения краевых задач теплопроводности, типичная для
инженерных приложений. Построены обобщенные решения нестационарных и стацио-
нарных краевых задач теплопроводности на ребре и на линейном тепловом графе при
различных граничных условиях на концах графа и обобщенных условиях Кирхгофа в его
узле. Используя свойства трансформанты Фурье фундаментального решения, получены
регулярные интегральные представления решений краевых задач в аналитическом виде.
Полученные решения позволяют моделировать источники тепла различных типов, в том
числе с использованием сингулярных обобщенных функций. Представленный здесь ме-
тод обобщенных функций позволяет решать широкий класс краевых задач с локальными
и связанными граничными условиями на концах ребер графа и различными условиями
пропускания в его узлах.

Ключевые слова: теплопроводность, обобщенные функции, фундаментальное и
обобщенное решение, преобразование Фурье, разрешение граничных уравнений, линей-
ный граф.
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