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Abstract. In this article, we obtain two theorems on a priori estimates for solutions of nonlinear equations
in a finite-dimensional space. These theorems are proved under certain conditions, which are borrowed
from the conditions which are satisfied by finite-dimensional approximations of one class of nonlinear
initial-boundary value problems. This article is a continuation of the first part with the same title. In
this paper, we prove the second theorem.
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1 Introduction

In many problems of mathematical physics, the law of energy conservation makes it possible to
prove the existence of a solution that satisfies an energy estimate. However, when the number
of spatial variables n ≥ 3, such estimates generally do not allow the use of perturbation
methods.

Solutions for which perturbation theory is not applicable—more precisely, those that do
not permit linearization or refinement through small parameter expansions—are commonly
referred to as “weak” solutions.

The applicability of perturbation methods plays a central role in the analysis of problems
in mathematical physics. Accordingly, the theory of differential equations places a significant
emphasis on establishing the existence of solutions that admit such techniques.
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Solutions that permit the application of perturbation theory are often referred to as
“strong” solutions, though this terminology may depend on the specific analytical framework.

Many problems of mathematical physics can be written in “restricted notation” (in the
form of an integral equation), usually of the following form

f(u) = u+ L(u) = g, (1)

where L(u) is the nonlinear part. This equation is often studied in the metric of some Banach
or Hilbert space H.

When moving to an “abbreviated notation” the energy estimate, usually performed for
problems in mathematical physics, will turn into an a priori estimate of the following form

∥G(u)∥ ≤ C · ∥u+ L(u)∥ = C∥g∥, (2)

where C is a constant number independent of u ∈ H, and G is a completely continuous
operator in H.

An a priori estimate (2) usually does not allow the use of perturbation theory. Therefore,
it becomes necessary to obtain an estimate of the following form

∥u∥ ≤ φ (∥f(u)∥), (3)

where φ(·) is a continuous function on [0,∞).
The presence of an estimate of the form (3), as a rule, opens the possibility of using

perturbation theory (with an appropriate choice of the space H).
A very important problem is the problem of the existence of a sequence of finite-dimensional

approximations of the problem (1) (more precisely, approximations of the operation u+L(u)):

f1(·), f2(·), ... , fn(·), ... (4)

considered in the spaces

H1, H2, ... , Hn, ... , dim Hn = n, (5)

such that a priori estimates of the form (2) are satisfied and it is possible to obtain an estimate
similar to (3).

It is implied that Hn (n = 1, 2, ...) is a subspace of H and the metric Hn is the metric
induced from the metric of H.

The problem of describing the dynamics of an incompressible fluid, due to its theoretical
and applied importance, attracts the attention of many researchers.

This work is devoted to the problem of the existence and smoothness of solutions to
equations of mathematical physics [1].
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The articles [2–4] provide a fairly complete analysis of the current state of the problem and
a review of the available literature, and propose methods to solve the problem. The articles [5–
13] are devoted to the study of the solvability in general of equations of mathematical physics,
the continuous dependence of the solution of a parabolic equation, and the smoothness of the
solution.

This work arose as a result of numerous attempts by the authors to solve the problem of
the existence of a strong solution to an equation of mathematical physics.

In this work, we obtain two theorems on a priori estimates of solutions to nonlinear
equations in a finite-dimensional Hilbert space. The work consists of four sections. The first
section is devoted to the introduction and origin of the problem. The second section provides
the notation used and the formulation of the main results. The third section provides a proof
of Theorem 1, which in the limit gives weak solvability of many problems of mathematical
physics. In the fourth paragraph, we prove Theorem 2, which in the limit allows us to establish
strong solvability of some problems of mathematical physics that admit perturbation theory.
The conditions of the theorems are such that they can be used in studying a certain class of
initial-boundary value problems to obtain strong a priori estimates in the presence of weak a
priori estimates.

This paper is the second part of the paper [14].

2. The conditions used and the formulation of the results

Let us derive uniform estimates for nonlinear problems in a finite-dimensional space. The
equations under consideration are (usually) analogs of finite-dimensional approximations of
equations of mathematical physics written in “abbreviated notation”.

Throughout this section, H is a finite-dimensional real Hilbert space with scalar product
⟨ · , · ⟩ and norm ∥ · ∥.

We will be interested in an equation of the following form

u+ L(u) = g ∈ H, (6)

where L(·) is a nonlinear continuous transformation, g is an element of the space H. The
solution u of problem (6) is sought in H.

We are focused on such finite-dimensional equations of the form (6) that are finite-
dimensional approximations of infinite-dimensional problems of the form (6) in an infinite-
dimensional Hilbert space. In this case, it will turn out to be very important to obtain
estimates that are independent of the approximation number and allow one to pass to the
limit and obtain a priori estimates in the limit for solving the infinite-dimensional problem.

It will be very important to obtain estimates that do not depend on the number of
approximations, allowing one to pass to the limit and to obtain in the limit a priori estimates
for solving an infinite-dimensional problem. Infinite-dimensional problems of the form (6), on
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which we are focused in what follows, are, as a rule, problems of mathematical physics written
in a limited form.

Here and everywhere below, f(u) will mean an operation of the form

f(u) := u+ L(u). (7)

If ξ ∈ [0,+∞) is a parameter and the vector u(ξ) is a vector function continuously
differentiable with respect to the parameter ξ, then we will assume that the vector-function
L(u(ξ)), is also continuously differentiable, as well as the expressions that arise from L(u) and
f(u).

We introduce the notation Lu:

(L(u(ξ)))ξ = Lu(ξ)uξ(ξ). (8)

It is obvious that Lu (for each u ∈ H) will be a linear operator

Luv = (L(u(ξ)))|uξ=v. (9)

We have
(f(u(ξ)))ξ = uξ + Luuξ = (E + Lu)uξ.

In what follows, if u0, v0 ∈ H, then the vector Lu0v0 is understood as follows: we take a
continuously differentiable vector function u(ξ) such that

u|ξ=0 = u0, uξ(ξ)|ξ=0 = v0

and for Lu0v0 we take the vector

Lu0v0 = (L(u(ξ))ξ
∣∣
ξ=0

.

Here and everywhere in what follows, E is an identity operator.
Let us denote

Du = E + Lu, D∗
u = E + L∗

u, (10)

D∗
uf(u) = (E + L∗

u)f(u). (11)

Mua =
(
D∗

u(ξ)f(u(ξ))
)
ξ

∣∣∣∣ u(ξ) = u
uξ(ξ) = a

=Muuξ
∣∣
uξ=a

=Mua. (12)

We present the conditions that we are going to use.
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Condition U1: For operators L(·), Lu, L
∗
u, Du, D

∗
u the following conditions are sat-

isfied 
∥Mu −Mv∥H→H + ∥L(u)− L(v)∥+ ∥Lu − Lv∥H→H +

+ ∥L∗
u − L∗

v∥H→H ≤ ψ (∥u∥)ψ (∥v∥) ∥u− v∥,

∥Mvu∥+ ∥D∗
vu∥+ ∥Dvu∥ ≤ ψ (∥v∥) ∥u∥,

(13)

where ∥ · ∥ = ∥ · ∥H , ψ(·) is a non-decreasing on [0,∞), positive continuous function.

Condition U2: There exist linear invertible operators T and Q such that

∥T∥ ≤ CT , ∥Q∥ ≤ CT , ∥T−1∥ <∞, ∥Q−1∥ <∞, (14)

and for any u ∈ H the inequalities hold

⟨Tu, L(u)⟩ ≥ 0, ⟨Tu, u⟩ ≥ ∥Qu∥2. (15)

In (14) CT is some fixed constant number.

In what follows, C or c (uppercase or lowercase, with or without indices) will denote con-
stant numbers (generally speaking, different in different places), independent of the adjacent
factors.

Theorem 1. [14] Let condition U1 and condition U2 be satisfied. Then for any g ∈ H
the problem

f(u) = g (16)

has a solution u ∈ H, satisfying the estimate

∥Qu∥2 ≤ CT ∥g∥2, (17)

where Q is the operator from condition U2, and CT is the constant from condition U2.

The proof of Theorem 1 is given in the first part of the article [14].
The notation of the transformations f(u), L(u), the operators Lu·, Du·, Mu· (defined

for each u ∈ H, (see (6)–(11)) and their conjugates L∗
u, D

∗
u and Mu will be used without

reservations.
We will also introduce the following notations:

J(u) = ∥u∥2 exp
{
−∥f(u)∥2

}
, (18)

N(u) = D∗
uf(u)− γ(u)u . (19)

We often use the notations (18) and (19) without reservations, as well as the notations
that arise in the formulations of conditions U1 and U2, and the notations that arise in the
formulations of conditions U3 and U4 given below.
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Condition U3: There exists an invertible operator G, such that

∥G∥H→H ≤ C0 <∞, ∥G−1∥ <∞ (20)

and for any u ∈ H the inequality

∥Gu∥2 ≤ d0 ∥f(u)∥2, (21)

where d0 > 0 is a constant.

Condition U4: If 0 ̸= u0 ∈ H, γ(u) > ∥u∥−2 and N(u) = 0, then strict inequalities
are satisfied

inf
{a}

⟨MuPua, Pua⟩ − γ(u)∥Pua∥2

∥Pua∥2
< 0 < sup

{a}

⟨MuPua, Pua⟩ − γ(u)∥Pua∥2

∥Pua∥2
, (22)

where Pua is an orthogonal projector.
The following theorem is true.
Theorem 2. If conditions U1, U3, and U4 are satisfied, then for any u ∈ H the a priori

estimate holds:
∥u∥2 ≤ C exp

{
∥f(u)∥2

}
. (23)

Note that the estimate (23) is satisfied if conditions U1, U3 and the following condition
U5 are satisfied.

Condition U5: There exist constant numbers c0, c1, m and a self-adjoint operator T,
such that if ∥u∥ ≥ 1, then the inequalities are satisfied

∥L(u)∥ ≥ c0 ∥Tu∥m, ∥u∥ ≤ c1 ∥u∥m. (24)

Remark 1. If the conditions of Theorem 1 are satisfied, that is, conditions U1 and U2
are satisfied, then condition U3 is also satisfied.

Remark 2. Theorem 1 allows us to prove the existence of a “weak” solution to some
problems of mathematical physics. To prove the existence of a “strong” solution, which allows
us to use perturbation theory for some problems of mathematical physics, we need another
finite-dimensional theorem, which will be proved under conditions U1, U3, and U4.

For 0 ̸= u0 ∈ H, we set

a (u0) = sup exp
{
−∥u∥2 + ∥f(u)∥2α

}
= sup R(u), (25)

where α > 1 and the supremum is taken over all vectors u ∈ H such that

J(u) ≥ J(u0) . (26)
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Lemma 1. For any c > 0, the set

M (c) = {u : J(u) ≥ c} (27)

is compact.
Since H is finite-dimensional, it suffices to prove the boundedness of the set M (c).
Proof. We prove the lemma by reasoning “by contradiction”. Let the set M (c) be un-

bounded.
For u ∈M (c) we have

0 < c ≤ J(u) = ∥u∥2 exp
{
−∥f(u)∥2

}
≤

≤ ∥u∥2 exp {−d−1
0 ∥Gu∥2} ≤ ∥u∥2 exp

{
−c1 ∥u∥2

}
,

(28)

where c1 > 0 is a constant.
When deriving (28), we have used condition U3.
When ∥u∥ → ∞, the right side of (28) tends to zero. We have obtained a contradiction.

Consequently, the set M (c) is bounded. The lemma is proved.

The following lemma holds.
Lemma 2. Let 0 ̸= u0 ∈ H. Then there exists a vector ũ0 ∈ H, realizing the supremum

(25)–(26). For ũ0 the following inequalities hold

J(ũ0) ≥ J(u0), exp
{
−∥ũ0∥2 + ∥f(ũ0)∥2α

}
≥ exp

{
−∥u0∥2 + ∥f(u0)∥2α

}
. (29)

Proof. The functionals J(u0) and exp
{
−∥u∥2 + ∥f(u)∥2α

}
are continuous. Since supre-

mum is taken over a set which is compact according to Lemma 1, we obtain the existence of
ũ0. The fulfillment of the inequalities (29) follows from the definition (see (25) and (26)).

The lemma is proved.

Let u = u(ξ) be a continuously differentiable vector function.
Then for the functionals

J(u(ξ)) = ∥u∥2 exp
{
−∥f(u)∥2α

}
, R(u(ξ)) = exp

{
−∥u∥2 + ∥f(u)∥2α

}
(30)

we have
Jξ(u(ξ)) = 2J(u)

[〈(
1

∥u∥2
− γ(u)

)
u−D∗

uf(u) + γ(u)u, uξ

〉]
=

2J(u)

[〈(
1

∥u∥2
− γ(u)

)
u−N(u), uξ

〉]
, (31)

Rξ(u(ξ)) = 2R(u)
[〈
N(u) + α ∥f(u)∥2(α−1)D∗

uf(u), uξ

〉]
=

Kazakh Mathematical Journal, 23:2 (2023) 6–22
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2R(u)
[〈(

−1 + αγ(u) ∥f(u)∥2(α−1)
)
u+ α ∥f(u)∥2(α−1)N(u), uξ

〉]
, (32)

recall that N(u) is from (19).

If we define the vector function u = u(ξ) as a solution to the problem{
uξ = xu+ y N(u),

u|ξ=0 = ũ0,
(33)

then from (31) and (32) we derive:

Jξ(u(ξ)) = 2J(u)

[(
1

∥u∥2
− γ(u)

)
∥u∥2x− ∥N(u)∥2y

]
, (34)

Rξ(u(ξ)) = 2R(u)
[(

−1 + αγ(u) ∥f(u)∥2(α−1)
)
∥u∥2x+ (35)

+ α ∥f(u)∥2(α−1) ∥N(u)∥2 y
]
. (36)

The following lemma is true.
Lemma 3. Let 0 ̸= u0 ∈ H and ũ0 be a vector that realizes the supremum (25)–(26).

Then, if ∥f(u0)∥ ≥ 1, then the following inequalities hold:(
1

∥ũ0∥2
− γ(ũ0)

)
·
(
−1 + αγ(ũ0) ∥f(ũ0)∥2(α−1)

)
≤ 0.

Proof. Assume the contrary.
Let the lemma inequality not hold. In the problem (33) we choose

x =

(
1

∥ũ0∥2
− γ(ũ0)

)
, y = 0,

then from (34) and (36) we obtain that the quantities J(u(ξ)) and R(u(ξ)) do not decrease in
the neighborhood of the point ξ = 0, and R(u(ξ)) strictly increases. Therefore, there exists a
point ξ0 > 0 such that

J(u(ξ0)) ≥ J(ũ0), R(u(ξ0)) > R(ũ0), (37)

and the second inequality is strict.
The fulfillment of (37) contradicts the origin of the vector ũ0. Therefore, the lemma is

proved.
The following lemma holds.
Lemma 3. Let 0 ̸= u0 ∈ H and ũ0 be a vector that realizes the supremum (25)–(26).

Then, if N(ũ0) ̸= 0, then the equality holds:

∥ũ0∥2 = α ∥f(ũ0)∥2(α−1). (38)
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Proof. Let us consider a system of linear inhomogeneous equations
(

1

∥ũ0∥2
− γ(ũ0)

)
∥ũ0∥2 x− ∥N(ũ0)∥2 y = d1,

(
−1 + αγ(ũ0)∥f(ũ0)∥2(α−1)

)
∥ũ0∥2 x+ α ∥f(ũ0)∥2(α−1)∥N(ũ0)∥2 y = d2,

(39)

with respect to unknowns x and y.
According to a well-known theorem of linear algebra, due to ∥N(ũ0)∥2 ̸= 0, we obtain

that the system has a unique solution if

∆ =

(
1

∥ũ0∥2
− γ(ũ0)

)
· α ∥f(ũ0)∥2(α−1) +

(
−1 + αγ(ũ0)∥f(ũ0)∥2(α−1)

)
=

=
α

∥ũ0∥2
∥f(ũ0)∥2(α−1) − 1 ̸= 0.

Therefore, if (37) is not satisfied, choosing in (38) d1 = 1, d2 = 1, we obtain that the
quantities J(u(ξ)) and R(u(ξ)) in the neighborhood of the point ξ = 0 strictly increase.
Consequently, there exists ξ0 > 0 such that the inequalities (37) are satisfied:

J(u(ξ0)) ≥ J(ũ0), R(ũ0) > R(u0).

The fulfillment of these inequalities contradicts the origin of the vector ũ0, realizing
supremum (25)–(26). Therefore, (38) is fulfilled.

The lemma is proved.
The following lemma is true.
Lemma 5. Let 0 ̸= u0 ∈ H and ũ0 be a vector that realizes the supremum (25)–(26).

Assume that the following condition is satisfied:

N(ũ0) = 0, 1− γ(ũ0) ∥ũ0∥2 ̸= 0. (40)

Then the equality (38) from Lemma 4 is satisfied, i.e.

∥ũ0∥2 = α ∥f(ũ0)∥2(α−1).

Proof. We define the vector function u = u(ξ) as a solution to the problem{
uξ = x · ξ u+ Pu a,

u|ξ=0 = ũ0 .
(41)
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From (31) and (32), using (45), we derive:

Jξ(u(ξ)) = 2J(u)

[(
1

∥u∥2
− γ(u)

)
ξ ∥u∥2x− ⟨N(u), a⟩

]
=

2J(u)

[(
1

∥u∥2
− γ(u)

)
ξ ∥u∥2x− ξ ·

〈(
1

ξ

∫ ξ

0
Nη (u(η)) dη

)
, a

〉]
=

2J(u)

[(
1

∥u∥2
− γ(u)

)
ξ ∥u∥2x− ξ

〈
Nη (u(η))

∣∣
η=0

, a
〉
+ ξ2O(1)

]
;

(42)

Rξ(u(ξ)) = 2R(u)
[(

−1 + αγ(u) ∥f(u)∥2(α−1)
)
ξ ∥u∥2 x+

α ∥f(u)∥2(α−1) · ξ
〈
Nη (u(η))

∣∣
η=0

, a
〉
+ ξ2O(1)

]
.

(43)

By virtue of (40) for small (but not equal to zero) ξ, we can eliminate x from (42) and
(43) by setting

∥u∥2 x =

(
1

∥u∥2
− γ(u)

)−1 1

ξ

〈∫ ξ

0
Nη (u(η)) dη, a

〉
.

Then we have
Jξ(u(ξ)) = 0, (44)

Rξ(u(ξ)) = 2R(u)

[(
−1 + αγ(u) ∥f(u)∥2(α−1)

) (
1

∥u∥2 − γ(u)
)−1

+

α ∥f(u)∥2(α−1)

]
ξ
(〈
Nη (u(η))

∣∣
η=0

, a
〉
+ ξ2O(1)

)
=

2R(u)
(

1
∥u∥2 − γ(u)

)−1 (
−1 + α ∥f(u)∥2(α−1)

∥u∥2

)
·

·
[
ξ
〈
Nη (u(η))

∣∣
η=0

, a
〉
+ ξ2O(1)

]
.

(45)

At the same time
⟨Nη (u(η))

∣∣
η=0

, a⟩ = ⟨Mũ0
Pũ0

a, a⟩ . (46)

By virtue of condition U4, the vector a should be chosen such that Pũ0
a = a and so that

the strict inequality holds

2R(ũ0)

(
1

∥ũ0∥2
− γ(ũ0)

)−1
(
−1 +

α ∥f(ũ0)∥2(α−1)

∥ũ0∥2

)
·
〈
Nη (u(η))

∣∣
η=0

, a
〉
> 0.
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From this and from (44) and (45) it follows that there exists a small ξ0 > 0 (not equal to
zero) such that the equality and strict inequality

J(u(ξ0)) = J(ũ0),

R(u(ξ0)) > R(ũ0),

that contradict the origin of the vector ũ0 are satisfied. Therefore, the lemma is proved.

Lemma 6. Let 0 ̸= u0 ∈ H and ũ0 be a vector that realizes the supremum (25)–(26).
Then at least one of the equalities either a) or b) holds:

a) ∥ũ0∥2 = α ∥f(ũ0)∥2(α−1);

b)
1

∥ũ0∥2
− γ(ũ0) = 0.

(47)

Proof. If equality b) from (47) holds, then the lemma is proved.
If equality b) does not hold in (47), then equality a) is obtained from Lemma 3 in the

case N(ũ0) ̸= 0 and from Lemma 5 in the case N(ũ0) = 0.
The lemma is proved.

3. Proof of Theorem 2

Let u0 be a vector whose norm must be estimated by the norm of the vector f(u0). Let

b̃ = sup {|D0(u)|+ |D1(u)|}, (48)

where supremum is taken over all vectors u ∈ H such that

J(u) ≥ J(u0) e
−1. (49)

In (48) D0(u) and D1(u) are defined by the equalities:
D0(u) =

(〈
f(u(η)), Du(η)u(η)

〉)
η

∣∣
uη=u

,

D1(u) =
(
∥u(η)∥2 − α∥f(u(η))∥2(α−1) γ(u(η)) ∥u(η)∥2

)
η

∣∣
uη=u

.

(50)

In the case where L(u) is a bilinear transformation, we obtain

D0(u) = (⟨u+ L(u, u), u+ Luu⟩)η
∣∣
uη=u

=

= (⟨uη + Luuη, u+ Luu⟩+ ⟨u+ L(u, u), uη + 2Luuη⟩)
∣∣
uη=u

=

= ⟨u+ 2L(u), u+ 2L(u)⟩+ ⟨u+ L(u), u+ 4L(u)⟩ = (51)
= ∥2f(u)− u∥2 + ⟨f(u), 4f(u)− 3u⟩ .
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If the transformation L(u) is continuously differentiable, then the functionals D0(u) and
D1(u) will also be continuously differentiable.

Since by (49) supremum is taken over a compact set, there exists a vector realizing
supremum (48)-(49).

The vector realizing supremum (48)–(49) will be denoted by ub. The existence of ub is
proved in the same way as in Lemma 2.

Let us choose a sequence of positive numbers

δ0, δ1, ... , δn, ... (52)

such that

0 < δj <
1

4
,

∞∑
j=0

δ2j =
1

4
,

∞∑
j=0

δj = ∞. (53)

From the vector u0 we construct the vector ũ0 that realizes supremum (25)-(26). Accord-
ing to Lemma 2, the inequalities are satisfied.

J(ũ0) ≥ J(u0), R(ũ0) ≥ R(u0). (54)

Recall that J(·) and R(·) are from (18).
According to Lemma 6, the vector ũ0 satisfies at least one of the conditions either a) or

b) from (47) of Lemma 6.
If a) from (47) is satisfied, then we obtain the estimate

J(ũ0) = ∥ũ0∥2 exp
{
−∥f(ũ0)∥2α

}
= α∥f(ũ0)∥2(α−1) exp

{
−∥f(ũ0)∥2α

}
≤

≤ α sup
x>0

xα−1e−x = α (α− 1)α−1e−α+1 < αα.

But J(u0) ≤ J(ũ0) (see Lemma 2).
Therefore

∥u0∥2 ≤ αα exp
{
∥f(u0)∥2

}
. (55)

Therefore, if equality a) from (47) holds, Theorem 2 will be proved.
If b) from (47) holds, i.e. if the equality

1

∥ũ0∥2
− γ(ũ0) = 0, (56)

then we take {u0, ũ0} as the initial pair and continue the construction.
Let the pairs be built

{u0, ũ0} , . . . , {un, ũn} , n ≥ 0 .
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Moreover, ũn implements supremum (25)–(26), in which u0 is taken as un.
For ũn, according to Lemma 6, at least one of the following conditions, either a), or b, is

satisfied:

a) ∥ũn∥2 = α ∥f(ũn)∥2(α−1);

b)
1

∥ũn∥2
− γ(ũn) = 0.

(57)

If condition a) from (57) is satisfied, then we interrupt the process of constructing pairs.
If equality b) from (57) is satisfied, then we proceed to constructing the pair {un+1, ũn+1}.

We define the vector function u = u(ξ) as a solution to the problem{
uξ = −u,
u|ξ=0 = ũn.

(58)

For J(u(ξ)) and R(u(ξ)) we have:

Jξ(u(ξ)) = 2J(u)

〈(
1

∥u∥2
− γ

)
u, uξ

〉
= 2J(u)

(
γ(u)∥u∥2 − 1

)
=

= 2J(u)

(∫ ξ

0

(
γ (u(η)) ∥u(η)∥2

)
η
dη

)
=

= 2J(u)

∫ ξ

0

(〈
f(u(η)), Du(η)u(η)

〉)
η
dη ;

(59)

Rξ(u(ξ)) = 2R(u)
[(

−1 + αγ(u) ∥f(u)∥2(α−1)
)
·
(
−∥u∥2

)]
=

= 2R(u)
[(

∥ũn∥2 − α ∥f(ũn)∥2(α−1)
)
+

+

∫ ξ

0

(
∥u∥2 − αγ(u) ∥u∥2 ∥f(u)∥2(α−1)

)
η
dη

]
.

(60)

When deriving (59) and (60), it was taken into account that equality b) from (57) is
satisfied.

Let us choose the number ξn from the condition

ξn =
1

8
√
b̃
δn. (61)
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where δ0 is from (52)–(53) and b̃ is from (48).
We integrate (59) from 0 to ξ ≤ ξn:

J(u(ξ)) = J(ũn) exp

{
2

∫ ξ

0

(∫ η

0

(〈
f(u(τ)), Du(τ)u(τ)

〉)
τ
dτ

)
dη

}
≥

≥ J(ũn) exp

{
−2

∫ ξ

0

(∫ η

0
|D0(u(τ))| dτ

)
dη

}
.

(62)

If
J(ũn) ≥ J(u0) e

− 9
10 , (63)

then by virtue of (62) for small ξ > 0 we have

u(ξ) ∈
{
u : J(u(ξ)) ≥ J(u0) e

−1
}
. (64)

Therefore, from (62) we obtain

J(u(ξ)) ≥ J(ũn) exp
{
−b̃ ξ2

}
.

It follows that (64) holds for all ξ ∈ [0, ξn] , where ξn is from (61).
From (62) we deduce

J(u(ξ)) ≥ J(ũn) exp
{
−b̃ ξ2

}
≥ J(ũn) exp

{
−1

8
δ2n

}
. (65)

Inequality valid for all ξ ∈ [0, ξn] .

Integration (60) performed for ξ ∈ [0, ξn] , taking into account the inclusion (64) leads to
the inequality:

R(u(ξ)) ≥ 2R(ũn)

[(
ξ ∥ũn∥2 − α ∥f(ũn)∥2

)
− 1

4
δ2n

]
. (66)

If
∥ũn∥2 ≤ 4α ∥f(ũn)∥2, (67)

then we terminate the process.
If (67) is not satisfied, then instead of inequality (66) we have the inequality

R(u(ξ)) ≥ R(ũn)

[
exp

{
δn√
b̃
· 3

16
∥ũn∥2 −

1

4
δ2n

}]
, (68)

true for all ξ ∈ [0, ξn] .
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Now for the left element of the pair {un+1, ũn+1} we take u(ξn), and for the right element
we take the vector implementing supremum (25)–(26), in which instead of u0 we take that
un+1 = u(ξn).

From (65), (68) and Lemma 2 we obtain:

J(ũn+1) ≥ J(un+1) ≥ J(ũn) exp

{
−1

4
δ2n

}
, (69)

R(ũn+1) ≥ R(un+1) ≥ R(ũn) exp

{
3 δn

16
√
b̃
− 1

4
δ2n

}
. (70)

The relations (64)–(70) will be true if we prove that the inequality (63) is satisfied.
From (69) for n ≥ 1 we have

J(ũn) ≥ J(ũn−1) exp

{
−1

4
δ2n−1

}
≥ J(ũ0) exp

−1

4

n−1∑
j=0

δ2j

 ≥

≥ J(ũ0) exp

−1

4

∞∑
j=0

δ2j

 = J(ũ0) exp

{
− 1

16

}
≥ J(u0) e

−1.

(71)

When deriving (71) in the last transition, Lemma 1 was used.
From the calculations (64)–(69) and (71) it follows that if inequality (63) is satisfied for

j = 0, 1, . . . , n − 1, then it is also true for n. Therefore, since for small n the fulfillment of
(63) is obvious, then (63) is fulfilled for all n until the process terminates.

If the process terminates at n = 0, then Theorem 2 follows from the estimate (55).
If the process terminates at some finite n ≥ 1, then condition a) from (57) is satisfied or

the inequality (67) is satisfied.
If condition a) from (57) or the inequality (67) is satisfied, then we have

J(ũn) = ∥ũn∥2 exp
{
−∥f(ũn)∥2

}
≤ 4α sup

x>0
x e−x = 4α.

From here and from (71) we obtain

J(u0) ≤ 4α e ≤ 12α.

From this inequality we obtain

∥u0∥2 ≤ 12α exp
{
∥f(u0)∥2

}
,

from which the statement of Theorem 2 follows.
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It remains to consider the case when the process does not terminate for any finite n.
In this case, due to the choice of {δn} (see (53)) from (70) we obtain

lim
n→∞

R(ũn+1) = ∞. (72)

Since by (71) and Lemma 1 the vectors ũ0, ũ1, . . . , ũn, ũn+1, . . . lie in a compact set,
and the functional R(·) is continuous, we obtain that (72) cannot be satisfied. Therefore,
Theorem 2 is proved.

Remark 3. By changing the choice of functionals J(·) and R(·), we can obtain other
theorems.
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Қошанов Б.Д., Өтелбаев М., Шыныбеков А.Н. АҚЫРЛЫ ӨЛШЕМДI СЫЗЫҚТЫ
ЕМЕС ТЕҢДЕУЛЕРДIҢ БIР КЛАСЫНЫҢ ШЕШIМДЕРIН БАҒАЛАУ. II

Осы мақалада шектi өлшемдi кеңiстiктегi сызықты емес теңдеулердiң шешiмдерiне
арналған априорлық бағалаулар туралы екi теорема келтiрiледi. Бұл теоремалар сызы-
қты емес теңдеулердiң шешiмдерiнiң бiр класының бастапқы-шеттiк есептердiң шектi
өлшемдi жуықтаулары қанағаттандыратын шарттардан алынған белгiлi бiр шарттарға
негiзделiп дәлелденген. Мақала осы атаумен шыққан бiрiншi бөлiмнiң жалғасы болып
табылады. Осы мақалада екiншi теорема дәлелденедi.

Түйiн сөздер: дифференциалдық оператор, сызықтық емес теңдеу, шешiмнiң бар
болуы, шешiмнiң жалғыздығы, шешiмнiң априорлық бағалауы.

Кошанов Б.Д., Отелбаев М., Шыныбеков А.Н. ОЦЕНКА РЕШЕНИЙ ОДНОГО
КЛАССА КОНЕЧНОМЕРНЫХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. II

В данной статье получены две теоремы об априорных оценках решений нелинейных
уравнений в конечномерном пространстве. Эти теоремы доказаны при выполнении опре-
делённых условий, заимствованных из условий, которым удовлетворяют конечномерные
аппроксимации одного класса нелинейных краевых задач с начальным условием. Статья
является продолжением первой части с тем же названием. В данной статье доказывается
вторая теорема.

Ключевые слова: дифференциальный оператор, нелинейное уравнение, существо-
вание решения, единственность решения, априорная оценка решения.
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