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Abstract. This study investigates the asymptotic behavior of the ranks of Selmer groups associated
with elliptic curves possessing a rational 2-torsion point defined over the integers. The Selmer group
plays a central role in understanding the Mordell-Weil group and the Birch and Swinnerton-Dyer con-
jecture. The arithmetic of elliptic curves with torsion points has long attracted significant interest, with
foundational results tracing back to the work of Mordell, Selmer, and later refinements by Cassels and
others. In particular, the behavior of 2-Selmer groups provides insights into the distribution of ranks
and the structure of rational points. Building upon previous methods developed for quadratic twists
and leveraging tools from Galois cohomology, we demonstrate that the upper bounds on the size of
these Selmer groups are unbounded within certain infinite families of elliptic curves. Our approach
highlights the interplay between local conditions at primes and global properties of the curve, offering

new perspectives on how torsion influences Selmer ranks.
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1 Introduction

Considering an elliptic surface
Eap:y* =2+ A(t)x + B(t) for A, B € Q[t], deg(A, B) <2

we investigate the rank of its fibers at particular values of t. Generally, it is known that for a
rational elliptic surface with generic rank rp, the subset of fibers with ranks rg + {1,2,3} is
not thin. One might ask further questions about the average ranks of fibers and the method
of computing the generators of the weak Mordell-Weil group. This task is carried out by
computing the Selmer group.
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We begin by marking the families of elliptic curves by a 2-torsion point (37,0) and their
isogeneus family of curves. We consider the families

E:y? =23 +n%e —rt—13
With h = 1, e.g, integral torsion points, and translating the torsion to (0,0) we get the family
E:Y?=X34+2r X%+ (* +r°)X

and the natural isogeny at the point (r,0).
The main objective of this work is to demonstrate the following:

Theorem 1. The upper bound of the Selmer rank for a family of elliptic curves with a rational
2-Torsion up to naive height X is loglog X

In recent years, several authors, most notably Klagsbrun et. al. [6], [8], have studied the
average behavior and distribution of Selmer ranks in families of elliptic curves, often using
Tamagawa ratios by the matrix construction described by Monsky in appendix of [5]. In this
work, we propose a direct and elementary argument showing that the upper bound of the
Selmer ranks in a family of elliptic curves with rational 2-torsion grows like loglog X, relying
on local Galois cohomology and the probabilistic distribution of twists and local images, as
laid out in [4]. Another approach to the construction of Selmer groups is the graph theoretical
method described in [2], [3] in which methods of graph theory are used to describe the Selmer
groups. The same method is used in [9] over Q(7). A notable similarity in most of these works
is the focus on an special case of this problem for the curves

E:y?=2%—na

either focusing on the case where n is an square, or general case as in |9]. Our aim is for
higher generality in this case, but we note that setting » = 0 gives the same curve here.

2 Selmer Groups

For a variety A and a number field k£ with a set of places v, we denote by A(k,) the set of
points on A in the v-completion of k. Let

H'(k,A) := H (Gal(k/k), A/k)
denote the Galois cohomology classes of A, in particular,
A(k) = H(K, A)

is the set of k-rational points on A.
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The Tate-Shafarevich group is defined as

E/Jk = ker(H'(k, A) — IZIHl(kV, A))

such that the non-trivial elements correspond to homogeneous spaces (also called k-torsors)
measuring the failure of Hasse principal. Conjecturally, this value is finite. This is only known
to hold for the class of elliptic curves with a zero of order at most one at L(FE/Q, 1), or curves
of rank < 1 given that the BSD conjecture is proven for all such curves.

For an isogeny of elliptic curves, we have the following sequence

0 — E(k)[¢] — E(k) — E'(k) — 0
where E(k)[g] is the kernel of isogeny. Applying Galois cohomology gives us
0 — E(k)[¢] — E(k) — E'(k) —
H'(k,E[¢]) — H'(k,E) — H'(k,E') — ...
Now, setting ¢ = m, the multiplication by m map and rewriting the sequence we get
0 — B(k)/mE(k) - H'(k, E[m]) — H'(k, E)[m] — 0
which we can restrict at each place v to get
0 — B(k,)/mE(k,) 2 H'(k,, E[m]) — H"(k,, E)[m] — 0.
The Selmer group is defined as the kernel

Sel™(E/k) = ker(H' (k, E[m]) — [ [ H' (kv, E)/6,(E'(K)/mE(K)))

of the mapping of m-torsion of the first Galois cohomology group to its restriction in all places.
In this way, we get the exact sequence

0 — E(k)/mE(k) — Sel™(E/k) — g/lk[m] — 0.

In [4], an algorithm is given for computing the connecting homomorphisms d, and d2. These
images are used coupled with the definition

Sel?(E/Q) = {x € H'Q,E[g)) | resy(x) € Im(s,) for all places p} = mlm(ép)
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to describe the full Selmer groups for each elliptic curve. A full description of the Selmer
group gives an upper bound on the rank of the elliptic curves as we have

rank(E) = dimp, Sel? (E/Q) + dimp,Sel? (E'/Q)
— dimp, I(E/Q)[] — dimp, LI(E'/Q)[¢'] =2 (1)

from which it follows that
rank(E) < dimp,Sel>(E/Q) + dimp,Sel*(E'/Q) — 2 (2)

relating the rank of elliptic curve to the dimension of the 2-Selmer group spanned as an [Fo
vector space. In particular, if the Tate-Shafarevich group is trivial, the two sides will be equal.
We refer to the right side of (2) as the Selmer rank of the curve E. In the next section. The
algorithm given in [4] is reproduced, which we will use as the basis for our argument.

2.1. Prior Results

The problem of understanding the distribution of Selmer ranks in large families of elliptic
curves has attracted significant attention in recent years. Bhargava and Shankar have shown
in a series of foundational works that, in large enough families of elliptic curves ordered by
height, the average size of 2-Selmer groups is bounded. Specifically, in [12], they establish
that the average size of the 2-Selmer group across all elliptic curves over Q is exactly 3, and in
[11], for families with a marked 2-torsion point, the average rises to 6. These results suggest
that, for a majority of curves, the Mordell-Weil rank is either 0 or 1, though they do not
resolve the Birch and Swinnerton-Dyer conjecture in individual cases.

The behavior in more constrained families, particularly those with prescribed torsion
structures, is subtler. In [13], Xiong investigates a specific one-parameter family

E,:y? =2 —n?,

showing that the average size of the 2-Selmer group grows slowly, approximately as

/1
iloglogX

as n < X. A more general result appears in [6], where Klagsbrun and Lemke-Oliver demon-
strate that the 2-Selmer rank in families of quadratic twists of curves with a marked 2-torsion
point can grow arbitrarily large. Their proof relies on studying the Tamagawa ratio between
a curve F and its 2-isogenous partner E’,

_ Sely(£)]

TR = S o
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and evaluating its 2-adic valuation across quadratic twists £X. The growth is controlled by
local cohomological invariants at primes dividing 2, the discriminants A, A’, and infinity:

ordy T(EX/EX) =g(x)+ > (dimg, HL(K,, E[g]) - 1),
v|2,A,00

where g(x) involves average Legendre symbols over ramified primes.

In a follow-up work [7], they show that the distribution of Selmer ranks across such
families of twists has mean 0 and variance loglog X, and they deduce that arbitrarily high
Selmer ranks occur infinitely often. However, these results apply specifically to twist families
and depend crucially on analyzing the variation of the Tamagawa ratio.

The present work differs in both setting and method. We consider a static family of elliptic
curves over (Q with a rational point of order 2 at the origin, not twists. We demonstrate that
even without extension to quadratic fields, the Selmer rank can exhibit unbounded growth,
and that the average rank exhibits logarithmic fluctuation. While our local analysis uses
similar cohomological terms, such as the local image under the Kummer map 4,, our method
is based on direct reduction and descent calculations adapted from Goto [4], rather than
Tamagawa ratios or isogeny-based arguments.

Moreover, while [6] suggests a y/log X average size of individual Selmer groups in such
families, no published proof of this claim appears in their later work [8], which instead focuses
on Cohen—Lenstra-type distributions for Selmer group structures given fixed rank. As such,
the present work contributes a distinct perspective on the problem by re-analyzing the growth
of 2-Selmer ranks directly over QQ, using concrete local-global computations without relying
on isogeny decompositions or twist families.

3 Algorithm for Computation of the Selmer Group

We now reproduce the algorithm given in [4] to compute the Selmer groups. We note here
that the images of the connecting homomorphisms ¢, and 51’0 are orthogonal with the (,),
Hillbert symbol, such that for all x € d,,y € &, we have (z,y), = 1.

In the following section, we have the curve

E:y?=2°+ A2’ + Bz

with values
a = Ordy(A),b= Ord,(B),d = Ord,(A* — 4B)

and <a> denoting the Legendre symbol, and u is a non-square modulo p. We have the

following cases

1. b=0:
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(a) 2|d and <_;A> = —1— Im(6,) = Z;Q*/Q*

(b) otherwise Im(d,) = {1}
2. b#0:
(a) a=0:

A
i. 2|b and (p) =—1—Im(5) = Z;QSQ/Q;@.
ii. otherwise Im(d,) = @;/Q;Z.

(b) a#0:
i. b=1— Im(éy) = (B).

12 / / ;
ii. b=2,a=1:let A=pA' B =p?’B' and o = <A43)’ﬁ: (‘M/E)
p p

with v/B’ denoting the p adic square root:
a =0 Im(6)) = (24, A2 — 4B).
a=—1— Im(dy) = (B).
B’ is not a square in Q, — Im(6,) = Q) /Q)2.
B=1—Im(d,) = (p)
B=1— Im(d,) = (pu).
(c) b=2,a>2:
i. —B is not a square in Q, — Im(d,) = (B).
ii. p=3mod4— Im(é,) = Q;/QSQ.
ili. p=1mod4 — Im(d,) = (p), (pu) depending on whether the quartic character
of —Binpis1lor —1.

(d) b>3,a=1— Im(6,) = (B).
(e) b=3,a>2— Im(dy) = (—A, B).

=9 aQw>

The algorithm concludes here. For ds, the algorithm is similar, but produces, on average,
larger groups. The algorithm can be simplified by making use of quartic characters, as in [9].

4 Main Theorem
Let F(X) denote the family of elliptic curves of bounded height:

F(X) = {EA,B : h(EA,B) < X}
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where the height function is defined by
h(E) = max(3A3,27B?).

We are concerned with the behavior of the 2-Selmer rank S(F) for E € F(X). Recall
that the algorithms described in the previous section define local connecting homomorphisms
dp and their duals d;,, which are orthogonal. These maps capture the image of F(Q,)/2E(Qy)
in H'(Qy, E[2]), and their interaction across all primes controls the dimension of the 2-Selmer
group.

Now consider a curve of the form:

E:y? =23+ pA'a? + p*B'x,
which is a quadratic twist of the curve
E,:y* =2+ A'2® + B'z.

This twist relation implies that the local images at p can be heuristically related, and in
particular, the twisting by p modifies the Selmer rank by introducing or removing local ob-
structions.

We model the expected size of the image of each local connecting homomorphism d,, by:

log X

n D 1
B~ Y. o~ L
. ; o (p=1)? P
where the last approximation holds in the limit as X — oo. That is, the expected contribution
to the Selmer rank from each prime p behaves like 1/p.

Summing over all primes p < X, the total expected Selmer rank satisfies:

E[S(F(X)]~ ) L loglog X.
p<X

Possible overlaps (i.e., dependencies between local conditions at different primes) contribute
correction terms of order Zp “q piq, which is convergent and thus does not affect the asymptotic
growth. Therefore, we obtain:

E[S(F(X))] ~ loglog X,

which completes the proof of Theorem 1.

This heuristic matches the behavior observed in the works of Klagsbrun—-Lemke Oliver
[6], [7] and Klagsbrun—Kane [8], who study the distribution of 2-Selmer ranks via Tamagawa
ratios and show that the average and variance of Selmer ranks grow like loglog X.
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5 Conclusion

Firstly, we point out the relevance of this to Birch and Swinnerton-Dyer (BSD) conjecture.
Recall that the BSD claims:

Claim 2. The order of zero of the L-function L(FE,s) associated to an elliptic curve E at
s = 1 is equal to its rank; further, the first nonzero coefficient of the Taylor series associated
to this point is
I — | IIL(E)[QpRpcE

’ETO’I"S’2 ’

where Qp, R and cg are constants related to the curve.

This result shows the growth of Selmer ranks for this family of elliptic curves. From the
equation (1) we see that this result, together with a study of the growth of Tate-Shafarevich
group could lead to the exact calculation of the above value for the L-functions, for further
testing the validity of the claim in the case of this family. Moreover, this result can help to
solve the following open problem by providing counterexamples.

Problem 3. Does there exist B € Z such that for all elliptic curves E over QQ, one has
rank(Q) < B?

We note that, in light of results such as [12| and [11], the vast majority of elliptic curve
families exhibit bounded average Selmer ranks, making them unlikely sources of counterexam-
ples to bounded rank conjectures. In contrast, families with unbounded Selmer rank, such as
the one examined here, become natural candidates for detecting potential violations. In this
context, one of two conclusions must hold: either the Mordell-Weil rank becomes unbounded
in such families, or the Tate—Shafarevich group II[(E) absorbs the excess growth. The latter
scenario raises a distinct and unresolved problem of its own, as no general algorithm exists
for computing III(E), and its behavior in large families over QQ remains poorly understood.

The general consensus is in favor of this, for example, as in [10]. We see that in this case
the boundedness of the rank would imply that the Tate-Shafarevich group also grows without
bounds. There are methods for studying this problem, as in [1], but it remains for future
undertakings to apply these to this particular family strictly over Q.
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Hxadapn M. M. PAIMOHAJI 2-TOPTIITI HYKTECI BAP SJIJIUITTUKAJIBIK
KNCBIKTAPJBIH CEJIBMEP PAHI'BI TYPAJIBI

Byn 3eprreyme OyTiH cammap YCTiHIE aHBIKTAJFAH paIlMOHAJ 2-peTTi KpydeHueci Oap
SJUINNITUKAJIBIK, KUCBIKTapra colikec Keyerid CelbMep TONTAPBIHBIH, PAHTICIHIH ACHMIITOTHU-
KaJbIK, KacuerTepi KapacTroipbLiaibl. CeibMep 1066l Mopeiuib—Beitis 106l Men Bépa —
Csunnepron-/laitep 60/2KaMbIH 3epTTEY/IE MAHbBI3/IbI PO aTKapa bl. Kpydenue aykTesaepi 6ap
JUIMITUKAJIBIK, KUCHIKTAPIBIH, apU(PMETUKACHI Y3aK, YaKbIT OONDI FaIbIMIapAbIH HA3APBIHIA
bosibit Kesimi. by camaga anramksl HoTtnzkesep Mopaenns men CenbMepiHn eHOeKTepiHeH
bacraJbi, keifin Kaccesic ykoHe 6acka 3epTTeyIIjiep TapallblHAH JTaMbITBLIIBL. Ocipece, 2-
CestbMep TONITAPBI PAIMOHAJ HYKTEJIEP/IiH KYPhIIBIMBIH K9HE PAHTICIHIH TapaJsyblH TepeHipeKk
Tycinyre MyMKiHIiK Oepesi. KBaapaTThik TBUCTTED YIITH YKACAJIFAH dJIiCTepre CyiieHe OThIPHIIT
»xoHe [asrya KOroMOJIOTHSICHIHBIH, KYPAJIIapbIH MMaiijlaiaHa OThIPBII, 613 OChIH A TOITapIbIH,
OJIIIEMiHIH, YKOFaprbl Oarachl Kebip MIeKCi3 SJIMITUKAIBIK, KUCLIKTAp OTOACBHIHIA IIEKTE-
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MeliTinin Kepceremiz. 2KymbicTa »Kaif caHmgapaarbl JOKaJl IMIapTTap MEH KUCHIKTHIH, TJI00AJ
KacHeTTepiHiH 6aillaHbIChl alKbIHIAJIbI, KpydenueHid CeabMep TOOBIHA 9Cepl TaJIaHaIbI.

Tyiiin ce3aep: 3/UMITUKAJIBIK KUCHIKTap, CesibMep TonTapsl, ['ajaya KOroMOJIOTHSICHI.

Hzxadapu M. M. O PAHI'AX CEJIbMEPA QJIJIMIITUYECKINX KPUBLIX C PAIIN-
OHAJIBHOI1 TOYKON ITOPAIKA 2

B nanHoi pabore uccenyercst aCuMIITOTHIECKOe ToBeleHre panros rpyim CegbMepa, ac-
COLMMPOBAHHBIX C JUIMITHICCKIMU KPUBBIME, 00JIaIaI0IIIMI PAIMOHAJIBHON 2-KpyUeHneM,
onpee/IéHHOI Hal meybiMu ynciaaMmu. ['pynia CejibMepa UrpaeT KJII0YEBYIO POJIb B U3YYEHUN
rpyuisl Mopaemis—Beiis u runmoressl bépua — Ceunneprona-/laitepa. Apudmernka 371Iui-
TUYECKUX KPUBBLIX C TOYKAMU KPYYeHHsI JAaBHO IIPHUBJIEKAET BHUMAaHUE, HAYMHAs C KJIaCCHYe-
ckux pesyiabraToB Mopaestss u CejibMepa 1 HOCTEAYIOIMUX yCcoBepIneHcTBoBaHnit Kaccemcom
U ApYyTUMHI UccaegoBaTeisiMu. B qactHocTH, 2-rpymmsl CebMepa MO3BOJIAIOT TJIYOXKe IOHATD
pacripejiejieHne paHroB U CTPYKTYPY palldoHaIbHBIX ToueK. Omnupasich Ha paHee pa3paboTaH-
HBIE METOJIbI, IPUMEHUMbIE K KBaIPATUIHBIM TBUCTAM, M HUCIIOJb3Ysl allllapaThl KOTOMOJIOTUH
lajtya, MBI TIOKa3bIBaEM, UTO BEPXHUE OIEHKH PAa3MEpPOB TaAKUX I'PYIIIT He OIPAHUYEHBI B OIpe-
JIeJIEHHBIX OECKOHEYHBIX CeMelCTBaX JUIMITHYECKUX KpUBBIX. Ilomxon momuépkuBaer B3au-
MOCBSI3b JIOKAJIBHBIX YCJIOBUI B MMPOCTBIX YUCIAX W IVIODAJBHBIX CBONCTB KPUBOM, PACKPBIBasI
BJUsIHIE KPYyYeHnus Ha cTPyKTypy rpymnmn Cenbmepa.

Kuarouessbie ciioBa: siumnTuyeckrue Kpusble, rpymibl CenbMepa, Koromosiorus: Lasya.
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