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Abstract. This paper investigates an inverse initial problem for a time-fractional wave equation involv-
ing the Hadamard fractional derivative. Unlike the more widely studied Caputo and Riemann—Liouville
derivatives, the Hadamard derivative is defined via a logarithmic kernel and exhibits distinct analytical
features, making it suitable for modeling processes with slow memory decay and multiplicative structures.
Building on prior work concerning the extremum principle and solvability of boundary value problems
with Hadamard-type operators, we establish sufficient conditions for the unique solvability of the inverse
problem. The analysis is carried out in terms of eigenfunction expansions and leverages properties of the
two-parameter Mittag—Leffler function. The findings contribute to the theory of inverse problems for
fractional wave equations and highlight the role of Hadamard derivatives in capturing complex temporal

dynamics in mathematical models.

Keywords. Fractional wave equation, inverse initial problem, Hadamard fractional derivative, Mittag-

Leffler function.

1 Introduction

Inverse problems for fractional partial differential equations have gained considerable attention
in recent years due to their broad applicability to modeling complex phenomena in physics,
engineering, and other scientific fields. In particular, fractional-wave equations, which in-
corporate memory effects and nonlocal behavior, provide a more accurate representation of
various real-world processes than their classical counterparts [1].
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This paper addresses an inverse initial problem for a time-fractional wave equation where
the fractional derivative is understood in the sense of Hadamard. The Hadamard fractional
derivative, characterized by its logarithmic kernel, introduces unique analytical challenges and
properties distinct from those of the more commonly studied Riemann—Liouville and Caputo
derivatives. More properties of this derivative can be found in [2], [3].

In [4], an extremum principle for Hadamard fractional derivatives was considered. The
authors established new estimates for the Hadamard fractional derivatives at extreme points
of functions. This extremum principle was instrumental in proving the uniqueness and con-
tinuous dependence of solutions for initial boundary value problems related to linear and
nonlinear time-fractional diffusion equations.

Sequential differential equations with the Hadamard fractional derivative were the subject
of [5]. The Ulam—Hyers stability of Caputo-Hadamard fractional stochastic differential equa-
tions was studied in [6]. Variable-order Caputo-Hadamard fractional derivative was considered
in [7].

We note works [8] and [9], where sub-diffusion and fractional diffusion-wave equations
involving the Hadamard fractional derivative were analyzed. In [10], a problem with the
terminal integral condition for a nonlinear fractional-differential equation with the bi-ordinal
Hilfer-Hadamard derivative was targeted for the unique solvability.

We investigate the well-posedness of this problem under specific assumptions on the given
data. By carefully analyzing the structure of the equation and utilizing appropriate functional
analytic tools, we establish conditions that guarantee the existence and uniqueness of a solu-
tion. The results presented contribute to a broader understanding of inverse problems asso-
ciated with fractional wave equations and highlight the potential of the Hadamard derivative
in modeling and analysis.

2 Direct problem

Consider an initial boundary value problem for the time-fractional wave equation with the
Hadamard fractional derivative in a rectangular domain. Let us consider an equation

HD?tu(tv x) - UUEGE(t? x) = f(tv .%') (1>

in a rectangular domain Q = {(t,z): 0 <z < 1,1 <t < T}. Here f(t,x) is a given function,
T > 1 is a positive real number, and

WD g(t) = (ti)nr(nl_a)/t (logi)n_aH g(;)ds (t>1)
1

represents the Hadamard fractional derivative of order (1 < o < 2, log(..) = In(..) [1].
Let us formulate a direct problem for equation (1).
Direct problem. To find a function u(t, z) satisfying
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the equation (1) in ;

regularity conditions u(-,z) € C% . [1,T], u(t,) € Cl0,1]nC%(0,1);

boundary conditions
u(t,0) =wu(t,1)=0,1 <t <T; (2)

e initial conditions

ali tu(t o = p(x), 0< < 1, gD§ tu(t,a — (), 0<z<1. (3)

Nims Nimrs

Here ¢(z) and 9 (x) are given functions, HIft represents the Hadamard fractional integral of

order 8 > 0 given
t

Il g(t) /( ) (ss)ds, t> 1,

1
the class of functions C§' (..) with 0 < < 1 is given by (see [1])

n—1

Csyla,b] = {g lgllez, = l18glle + ||5"9Hc%1og} ,
k=0
O d
05,’}/ [a, b] = C’y,log [a, b] (5 = t%

We search a solution to the direct problem as follows:
e}
u(t,x) = Z Uk (t) sin kmx. (4)
k=1
Substituting (4) into (1) at f(¢,x2) = 0 we obtain

a D UL(t) + (k) Un(t) = fr(t), (5)

1
where fi(t) =2 [ f(t,z)sin krzdz are Fourier coefficients of the function f(¢,z) represented
0

by Fourier-Sine series, i.e.

oo
= Z fr(t) sinkma.
k=1
Initial conditions (2) give us
Hlf;aUk(t)\t:H =y, 0< 2 <1, HD?;lUk(t)\t:H =, 0 <z <1 (6)
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Here, ¢ and vy are Fourier coefficients of functions ¢(z) and ¥ (x), respectively.
The solution of the Cauchy-type problem (5)-(6) can be represented as [1]

Ur(t) = ¢kt = 1)* " Ea,a [~ (km)*(log )] + ¢x(t = 1)* *Eqg a1 [—(km)?(log t)*] +
t
£\t £\ ds
+ [ (log= ]  Eaa|—(kn)*(log= ) | fi(s)—, (7)
o) s o2

oo
where E,(2) = > m, with ¢ > 0 and b € R, represents two-parameter Mittag-LefHler
n=0

function [1].
It is easy to prove the following statement.

Lemma 1. If g(z) € C?[0,1] is such that g(0) = g(1) = 0, ¢"(0) = ¢" (1) = 0, and
g" (x) € L2 (0,1), then

"

o0
Z ‘gk| kﬂ- < Z H2 :
k=1

The proof of this lemma can be done using integration by parts, considering Bessel’s
inequality and Parseval’s identity.

The convergence of the infinite series corresponding to the functions u(t, z) and uy,(t, x)
can be proved using Lemma 1 and the well-known estimate of the two-parameter Mittag-
Leffler function E,,(—z2) < 1+\Z| for z > 0 [1].

Regarding the solvability of the direct problem, we can state the following.

Theorem 2. If the functions o(x), ¥(x), and f(t,z) (with respect to the variable x) satisfy
the condition of Lemma 1 and f(-,x) € Cy105[1,T], then a solution of the direct problem does
exist, moreover, it is unique and is represented by Formula (4), where Ug(t) will be found
using (7).

3 Inverse initial problem

In this section, we consider an inverse problem of finding an initial condition using the addi-
tional data at a fixed time.

Inverse initial problem. To find a pair of functions {u(t,z); ¥ (x)} satisfying
e the equation (1) in ;
e regularity conditions u(-,x) € CF,,,[1,T], u(t,-) € C10,1] N C%(0,1), ¥(z) € C[0,1];

e boundary conditions (2);
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e the first initial condition of (3);
e over-determination condition u(§,x) = ((x), 0 <z <1 for fixed & € (1,T].

Here, ¢(z) and ((x) are given functions.

Inverse initial problems for differential equations were considered in many works. For
example, see [11]-[14]. Namely, in [11], authors investigated the unique solvability of the
inverse initial problem for the heat equation with the Bessel operator. Then in [12], the result
was generalized for the time-fractional heat equation with the same operator in the space
variable. In [13], a similar inverse problem was targeted at the sub-diffusion equation with a
variable coefficient involving a more general fractional derivative. The work [14] is devoted to
the unique solvability of the inverse initial problem for the fractional wave equation.

The following statement holds:

Theorem 3. Let 1 < a < 4/3. Then if the functions o(x), ((x), and f(t,z) (concerning
the variable x) satisfy the condition of Lemma 1 and f(-,x) € Cy10g[1,T], then a solution of
the inverse initial problem does exist, moreover, it is unique and represented by the following
formula:

=> [gok (t — 1)* By o[ (km)?(log )] + ¢x(t — 1)* 2 Eq a1 [~ (k7)?(logt)*] +
k=1
/ ! t ds
+ log — Euo |—(km)? (log fr(s)— ]smlmx (8)
[ (e8) " o e en)

.- 1 o _ a—1 —(kn 2 o o]
; —1)e- ZEaa—l [—(lm)2(log§)a]{<k ep(§—1) Ea,oc[ (k)= (log £)“]

) [ () 0
1/<1gs) Ea,a[(k )2<1g8>}fk() k 9)

Proof. We assume that function v(z) is given and then use the solution of the direct problem,
given by

u(t,z) = Zsin kwx{gok(t — 1)* By o [~ (km)*(logt)*] + ¢y (t — 1)*72

k=1
X Eqa-1[—(km)*(logt)® +/t<10g ) [—(lm)2 (log > }fk() } (10)
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Substituting (10) into the over-determination condition, one will get

= Zsin /@mc{gok(ﬁ 1) B, . [—(kﬂ)Q(IOgﬁ)a] + (€ —1)*72 x

£

X Ega-1 [—(km)?(log £)” +/<10g > [—(zmﬁ (log§>a] fk(s)is}. (11)

1

In [15], it was shown that the Mittag-Lefler function E,;(z) does not have zeros for
1 <a<4/3, 2,b € R. You can also see [14]. Therefore, dividing the coefficient of the
function ¢ (x) in (11), one can easily get (9).

The convergence of infinite series representing the solution can be proved using Lemma 1.
Namely, using (8) and considering the estimate [2E,;(—z)| < C for z > 0, we get

t
e d
<>~ |Culenl + Calinl + s [ 1Al
k=1 1

Here C; (i = 1, 3) are positive real numbers. Further, since they do not have principal impor-
tance, we denote them as C. Integration by parts and the well-known inequality 2ab < a®+ b2
yield

> ds
Z )2 ‘Sok +!¢k ’2 /’fk 2 s |
k=1
where gpk = fcp ) cos kmad, zp,(:) = fzp/( cos kmxdz, fk = ff;c t,x) cos kmxdz.

Using Parseval s identity, one can easily get

o0

d
)| <€ {3 + @ + @) + / el I3 2
k=1
Here || - ||2 presents the L2(0,1)-norm. Similarly, we will get
> 2 dS
@I <C (3 g + @I + e @I+ /\fz o=
k=1

Note that to get this, we have imposed the following conditions on the given functions:

p(x), C(z), f(t,z) € C[0,1], ¢(0) = ¢(1) =0, ¢(0) = ¢(1) =0, f(¢,0) = f(£,1) =0,
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¢'(x), {'(@), falt,-) € La(0,1).

To prove the uniform convergence of infinite series corresponding to . (¢, ), we will impose
more conditions on the given functions as it was present in Lemma 1.

The uniqueness of the solution to the inverse initial problem follows from the completeness
of the system {sinknz}?°,. Namely, assuming that the problem has two different set of
solutions {u;(t,x), ¥1(x)}, {ua(t,x), ¥2(x)}, and denoting

u(t’$) = ul(t7x) - u2(t,x), 1/J(I‘) = ¢1($) - ¢2($)7

we will get the corresponding homogeneous problem. Then we multiply both sides of (4) by
sinmmz, and integrate along [0, 1]:

1 1
/u(t,x) sinmrrdr = /ZUk(t) sin(krz) sin(mnx)dz.
0 0 k=1

Based on orthogonality of the system {sink7x}}°,, one can easily get
1
Uk(t) = 2/u(t,x) sin kradz. (12)
0

The solution of the homogeneous case of Problem (5)—(6), from (7) easy to deduce that
Uk(t) = 0. Hence, due to (12), considering that the system {sinkmx}7°, is complete, we

obtain u(t,z) = 0, which proves the uniqueness of the solution to the considered inverse
initial problem.
Theorem 3 has been proved. ]
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Asmmmvos 3yxpunns, Kepbasn Cedoru, AJIAMAP BOJIINIEK TYBIHJIBICHI KATBICKAH
BOJIIEK PETTI TOJIKBIH TEH/IEYI YIIIIH KEPI BACTAIIKbBI ECEIT

By Makajama yakbeIT aiffHbIMAJIBICHI OOiibIHINa Ajamap OeJIIeK TYBIHIBICH KATBICKAH
OeJIllIeK peTTi TOJIKBIH TeHJIeyl YIIH Kepl OacTalKbl ecell KapacThipbliaiabl. Kerr 3eprreeria
Puman—JIuysuiiib Mer KamyTo TybIHIBIIAPBIHAH aflbIPMAIIBLIBIFEL, AqaMap TYBIHIBICHL JIO-
rapudMIiK sIpO apKbLIbl aHBIKTAJBIIN, Oady »KaJl ocepJiepi MeH MYyJIbTUILINKATUBTI Kypbl-
JIBIMJIAp/bl CUIIATTayFa MYMKIHIIK Oepemi. Apropsap Ajgamap THUITI omeparopjapMeH Oaii-
JIAHBICTBI TMEKAPAJIBIK, €CENTEP/IiH, eIyl »KoHe SKCTPEMYM MTPUHITAI YKOHIHJIET1 aJJIbIHFbI
JKYMBICTapFa CyilieHe OTBIPBII, KEPi €CeNTiH »KaJFbI3 MIEMIMl YIIH KEeTKUHKTI MapTTapibl
monenmeiini. 3eprrey Pypbe Karapiaapbl MeH eki mapamerpsai Murrar—/ledbdaep dyrkim-
SICBIHBIH, KACHETTePiHe HerizyesreH. AJIbIHFAH HOTHXKEJep OOJIIIEK TOJKBIHIBIK, TeHIeyIepre
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apHAJIFAH Kepl ecerrep TeOPUsICHIH TOTBIKTHIPAJIBI KoHe AlaMap TYBIHIBLIAPBIHBIH KYPIe
YaKBITINA JTUHAMUKAJIAD/IBI CUIIATTAYIAFbl MAHBI3BIH KOPCETE/I.

Tyiiiu cesaep: Beumek perti TOJMKBIH TeHJeyi, Kepi bacTankp! ecer, Amamap 6eJIIex
TybiHIbIchl, MurTar—J/ledbdiep dyukusco.

Anmmos Syxpuann, Kepban Cebru, OBPATHAA HAYAJIBHAA 3AJTAYA JIJIA JIPOB-
HOT'O BOJTHOBOT'O YPABHEHISI C IPOBHOI ITPOM3BO/IHON AJJAMAPA

B mamnoit crarbe paccMarpuBaeTcs obpaTHas HadabHasl 3aa49a s IPOOHOrNO BOJIHO-
BOI'O ypaBHEHUsI ¢ JpOOHOU mpom3BomHON Ajmamapa 1o Bpemenu. B ormimame ot OoJiee u3-
BECTHBIX IPpou3BoAHbIX PuMmana—/Inysmwuisa u Kamnyro, npoussonaas AzaMapa olpene/isercst
¢ MOMOIIBIO JIOTaPU(PMHUIECKOTO sjipa U 00jIa1aeT 0COOBIMU AHAJUTUIECKUMU CBOHCTBAMU,
UTO JeJIaeT €€ MOAXOMISINe /st MOJIEIUPOBAHUS IIPOLECCOB ¢ MEJIJIEHHBIM 3aTyXaHHeM IIa-
MSTH U MYJIBTUIINKATHBHON CTPYKTYypoii. OCHOBBIBAsICh HA PaHee IOy IEeHHBIX Pe3y/IbTaTax
10 IPHUHIIAIIY SKCTPEMyMa U pa3pelInMOCTH KPAEeBhIX 3aJ1a4 ¢ IPOM3BOIHBIMI XaJaMapa, aB-
TOPBI YCTAHABJIUBAIOT JOCTATOYHBIE YCJIOBUS €JIMHCTBEHHOCTU perreHusi. MeTos OCHOBaH Ha
PA3JIOXKEHNUN 110 COOCTBEHHBIM (DYHKIIUSIM U HCIIOJIb30BAHUK CBOWCTB JIBYXITapaMeTPHIECKO
dyukun Murrara—Jleddiepa. [losrydennnie pe3yiabraThl BHOCSIT BKJIaJ B Pa3BUTHE TEOPUM
0OpaTHBIX 3384 JJisi JPOOHBIX BOJHOBBIX YPABHEHUN U MOMIEPKUBAIOT POJIb ITPOU3BOIHBIX
Anramapa B MOIEIMPOBAHUU CJIOXKHON BPEMEHHOH ITMHAMUKHU.

Kuarouesnie cioBa: J[pobrnoe BosiHOBOE ypaBHEHHE, 0OpaTHas HAYaIbHAas 3a/1a9a, 1pob-
Hast TpoM3BoaHast Amamapa, dyuknus Murrar—/leddiepa.

KAZAKH MATHEMATICAL JOURNAL, 25:2 (2025) 36—44



