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Abstract. Numerous applications in physics and engineering involve models with partial differential
equations of mixed type. The theory of boundary-value problems for such equations in two dimensions
has been well studied. However, the key problem of well-posedness of mixed problems for such equations
in multidimensional bounded domains remains unsolved. This paper establishes a mixed domain in which
the solution to the Tricomi problem for the multidimensional Lavrent’ev-Bitsadze equation has a unique

classical solution.
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1 Introduction

Many important applications in physics and engineering involve models with partial dif-
ferential equations of mixed type. For instance, models of electrostatic waves in a cold plasma
lead to solving boundary-value problems for mixed elliptic-hyperbolic equations (see [1]).

Another classical application involves modeling vibrations of elastic membranes. Let the
membrane deflection be described by a function u(x,t),z = (z1,...,Zm), m > 2. Following
Hamilton’s principle, one then obtains a multidimensional wave equation. Instead, assuming
that in the bending position the membrane lies in equilibrium, we get to the multidimen-
sional Laplace equation. Hence, the process of vibrations of elastic membranes in space is
mathematically represented by the multidimensional Lavrent’ev-Bitsadze equation ([2]).

The theory of boundary-value problems for hyperbolic-elliptic equations in two dimensions
has been well studied (see, for instance, the monographs |2, 3] and the references therein).
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However, the key problem of well-posedness of mixed problems for such equations in mul-
tidimensional bounded domains remains, to the best of our knowledge, currently unsolved
([4]).

A multidimensional version of the Tricomi problem for the Lavrent’ev-Bitsadze equation
was initially posed in [4,5] (see also [6]). In the articles [7, 8] the authors prove that this
problem in the multidimensional case is ill-posed, i.e., it has multiple solutions.

Naturally then, a key question is: in which mixed domains the solution of the Tricomi
problem is well-posed? In this paper, we answer this question by establishing a mixed do-
main in which the Tricomi problem (for the multidimensional Lavrent’ev—Bitsadze equation)
is uniquely solvable; moreover, we obtain an explicit form of the classical solution to this
problem.

Let us also mention the article |9], which analyzes the Tricomi problem in a three-
dimensional domain.

2 Statement of the Problem and the Main Result.

Let € be a finite domain of the Euclidean space E,, 41 of points (x1, ..., T, t), bounded for
t > 0 by the spherical surface I : |z|?>+t? = 1, whereas for t < 0 by the cones K. : |z| = —t+¢,
Ky :|z| =1+t 52 <t <0, where |z| is the length of the vector z = (21,...,%n), and
0<e<.

Let us denote with Q" and Q the parts of the domain €., that lie in the half-spaces t > 0
and ¢t < 0, with S¢ the general part of the boundaries of the domain QF, Q- representing the
set {t =0, ¢ < |z| < 1} of the points in E,,. The parts of the cones K., K1, bounding the
domain Q_, are denoted as S;, S; respectively.

In the domain €2, let us consider the multidimensional Lavrent’ev—Bitsadze equation

Axu + (Sgn t)utt = 0, (].)

where A, is the Laplace operator defined over the variables x1, ..., T,,, m > 2.
From here onwards, we conveniently switch from the Cartesian coordinates z1, ..., Ty, t
to the spherical ones r, 01, ..., 0p—1,t, 7> 0,0<6; <27, 0<0; <m,i=2,..., m—1,

0= (01,....0m_1).

The multidimensional Tricomi problem is then the following:

Problem 1. Find a solution of the Equation (1) in the domain Q. under ¢t # 0 in the
class C(Q.) N C%(QF U QL) satisfying the following boundary-value conditions:

u‘r = (r,0), (2)

u

S = ¢(T’ 9)7 (3)

Let us mention that Problem 1 under € = 0 in a specific case has been analyzed in [5].
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Let {Y,f’m(ﬁ)} be a system of linearly independent spherical functions of order n, where
1<k <kp, (m—2)nlk, = (n+m—3)!(2n+m —2), and WL(S), for l = 0,1,..., are Sobolev
spaces.

The following lemmata hold ([10]).

Lemma 1. Let f(r,0) € Wi(S¢). If | > m — 1, then the series

oo kn

f(r,0) =" > i)Y, (), (4)
n=1

k=1

as well as the series obtained from it by differentiation of order p < | — m 4+ 1, converges
absolutely and uniformly.

Lemma 2. For f(r,0) € Wi(S), the necessary and sufficient condition is that the coeffi-
cients of the series (4) satisfy the inequalities

oo kn

B <er D0 n?

n=1k=1

2
fjf(r)‘ < c9, c1, cog = const.

We denote by ¢F(r) and 1¥(r) the coefficients of the decomposition of the series (4) of
the functions ¢(r, €) and ¥ (r, ), respectively.

Let o(r,0) € WH(T), (r,0) = (r — 2)75 4% (r,0), v (r.0) € Wh(S1), 1 > Gt

Then, the following theorem holds.

Theorem 1. For any € > 0 Problem 1 is uniquely solvable.

Proof of Theorem 1. In spherical coordinates, the equation (1) in the domain Q% has
the following form (see [10]):

m—1

1
Upp + Uy — T—Qéu + uy = 0, (5)

= 1 ) )
=-— - sinm_j_10~> L1 =1, g; = (sinf..sinf;_1)% j > 1.
]; g;sin™ =19, 96; < 7100; / !

It is well known that the spectrum of the operator ¢ consists of the eigenvalues A\, =
n(n+m —2), for n = 0,1,..., to each of which correspond k,, orthonormal eigenfunctions
Yy (0).

Given that the desired solution of Problem 1 in the domain QT belongs to the class
C(QF) N C?(2T), then this solution can be sought in the form

oo kn

u(r,0,t) = > ak(r )Yy, (0), (6)

n=0 k=1
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where @ (r,t) are functions to be determined.
Substituting (6) into (5), taking into account the orthogonality of the spherical functions
Y (8) (see [10]), we obtain

m—1 A
a]:m“r + a]:vr + ’a]:Ltt - 7;@2 =0, k=Lk,, n=0.1,.., (7)

where we write the boundary condition (2), considering Lemma 1, in the form

@k (/1 —12) = ok (1), k=T,k, n=0,1,..., 0< 7 < 1. (8)

a=-m)

In (7),(8), substituting @* (r,t) = r 2 uf(r,t), and then letting r = pcosp, t = psin,
p>0,0< ¢ <7 we obtain

1 1 A

k k k n k

- — =0, 9

Unpp T pvnp 2 Ungyp T 22 cos? SDUn (9)
vk (1,0) = gh(e), (10)

e — [( — 1)(3 — ) — 4\ ]
. m m n
Uz(p, p) = ufb(pcos ©, psing), A, =

(m—1)
gh() = (cosp) 2 o (cos ),

Let us seek the solution of the problem (9)—(10) in the form

un(p, ) = R(p)g(¢)- (11)
Substituting (11) into (9), we obtain
p*Ry, + pR, — uR =0, (12)
Gpp + | 1+ An ¢ =0, = const (13)
e B cos? )" 7 r= ’

If we look for the solution of the Euler equation (12) in the form R(p) = p®, 0 < s = const,
we hence obtain s? = p.
Henceforth, let’s write the equation (13) in the following form:

-1 (m —3)
- — = -—n— ) 14
Do [008290 S :| o, 1 n 9 (14)
In equation (14), substituting ¢ = sin? ¢ we obtain the following equation:
1
§(6 —1)gee + [(a+ﬁ+1)£— 2] g¢ +aBg =0, (15)
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_ 9(p) ( +8) _(I=9)
g(é)_ COSlg07 o = ) /8 2 .
The general solution of equation (15) can be represented by the formula (see [11]):
1 1 1 3
gs(g)zclsF (B? s 276) +028\/5F (5_‘_237—{—2’ 2a£> ) (16)

which is periodic in ¢, if s = 0,1,..., where c¢i5, cos are arbitrary independent constants,
whereas F'(f3, v, «; £) is the Gaussian hypergeometric function.

Consequently, from (11) and (16) it follows that the general solution of the equation (9)
can be written as

o0

1. . 13
o= St o (1 S ) v (15 )|
s=0

(17)
Because |uf (p, ) | < oo, from (17) we obtain

1 1 3 3
ClsF <Bv 7> 271> +CZSF <ﬁ+277+27271> :07
2I'(1 — B)I(1 — )

Cos = — ( - 5) <1 - 7) Cls; (18)

where I'(z) is the gamma function.
Substituting (18) into (17), we obtain

(o]
w)zzr:1spscoslso[ </37 7, 53sin s0>
s=0

or

20(1 — B)0(1 — )

1 1 sin pF <ﬁ+ ,’y+ 3 ;sin g0> . (19)
)

2

A well-known result is (see, for instance, [12]) that the system of functions

1
{2, cos 25, sin2sp, s =1, 2, }

is complete, orthogonal in C([0,7]), and therefore it is also closed.
From here, it follows that the function g% () € C([0,7]) can be decomposed into the series
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gn(p) = ag, + Z (alg,n cos 2sp + b’;n sin 23<p> , (20)

where
(21)

Next, subjecting the function (19) to the condition (10), taking into account the decom-
position (20) and allowing ¢ = 0, we obtain

cip=al,, s=01,..,. (22)

Therefore, from (6), (19), and (22) it follows that the solution of the problem (5),(8) in
the domain Q7 is the function

oo kn o0

s, n, (m=3)
’LL(»,«’ (9, t) = Z Z Z [a’;‘mTQ—m—n(r2 + t2)5+5+T3

n 5—-m s n 5-m s 3 t2 k
pl-tp2mmy s naomm S0 Ty (g). 23
< 2+ 4 +2’ 2+ 4 27 2’ T2—i—t2>] nm (6) (23)
From (23), for t — +0 we obtain
oo kn
u(r, 0,0) = 7(r,0) ZZZasn = mm(ﬂ), (24)
n=0 k=1 s=p
where p > ™2 whereas ak are determined from (21).
It is known that if gn( ) € C9((0,m)), then the following estimate takes place (see [13])
laf .| < &5, ¢ =0,1,..., and, moreover, the following formulae hold (see [14]):

df F( b ): (a)q(b)qF

b : =0,1...
T ©. (a+q,b+aq ctqz2), ¢=01.,
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(@) :F(a—l—q) I'(z+a)
! I(a) " T(z+5)

as well as the following estimates hold (see [10]):

=2 14 o fa = f)fa— - 1) +0(72)]

o1 . .
|kn| < c1n™ 2, !wY,{im(e)\ <em®T M =T, m—1, ¢=0,1..,.
i

From the embedding theorem (see [15]) it follows that W(S¢) c C?(S)NC(5%) provided
that [ > ¢+ 3.

The above analysis, together with the lemmata and the boundary-value conditions, imply
that the solution of the form of equation (23) u(r,0,t) € C(Q+) N C?(QF), where

7(r,0) = 7“27'*(7”7 0), 7*(r,0) € Wé(Ss), > 37171 + 2.

Hence, taking into account the boundary conditions (3) and (24), we arrive, in the domain
- to the Darboux-Protter problem for the multidimensional wave equation:

AJ;’U, — Ut = 0 (25)

with the following conditions:

ul . = 7(r,0), u 5 = P(r, 0) (26)
for which the following theorem has been established (see [16-18]):
Theorem 2. For ¢ > 0 the problem (25)-(26) has the unique solution.
Next, using Theorem 2, we arrive to the validity of Theorem 1.
Given that in [16-18] the explicit form of the classical solution of the problem (25)—(26)
has been obtained, then we can also analogously derive an explicit representation also for the
solution of Problem 1.
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Anpames C.A. KOIIOJIILIEM/II JTABPEHTHEB-BUIIAZISE TEH/IEVI YIIIH TPU-
KOMU ECEBIHIH KOPPEKTILJIII'T

Pusuka MEH TEXHUKAIAFbl KOIITEreH KOCBIMITAIAD apaJjac TUMTI irriHapa anddepenual-
JBIK, TeHIeysIepi 6ap Momeabaepal KaMTuabl. Exi esmmemaeri MyHIail TeHgey/ep YImH IeKa-
PaJIbIK, eCenTepIiH, TeOPUICHl KAKCHI 3epTTe/reH. JlereHMen, KOIoJIeM/ i IIeKTe/IreH 00IbI-
cTap/iarbl MYHJIail TeHJIeysep YIINH apaJjac ecenTep/ii JIYPhIC KOIOJBIH HEri3ri Moceseci Ka3ipri
YaKbITTa MIEMIJIMEreH KYHiHIe KAJIBII OThIP. By )KyMbIcTa apaJjac o0JIbIC KeJITipireH, oHIa
keneJsimreM i JlaBpenther-Burnanze Tenneyine Tpukomu ecebiHiH K/IaCCHKAJIBIK, YKAJIFBI3 IIIe-
mriMi 6ap eKeHJIIri JIpJIes/IeHTeH.

Tyitiaai cezgep. Tpuxkomu ecebi, apajgac OOJBIC, KJIACCUKAJBIK IITEITIM, KOIOJIIEMI
JlaBpenrnheB-Bumnanze Tengeyi, cdepasblk QyHKIHIAD.

Annames C.A. KOPPEKTHOCTb 3AJIAYUM TPUKOMU IJId MHOT'OMEPHOTI'O
YPABHEHI A JTJABPEHTBEBA-BUIIA/ISE

MHoro4mcjaeHHbIe IPUIOXKEHNs B (PU3MKE M TEXHUKE BKJIOYAIOT MOJIEIN C YPaBHEHUSIMU
B YACTHBIX IMPOU3BOJIHBIX CMEIIAHHOTO TUIA. 1eopusi KPAEBBIX 33184 I TAKUX yPABHEHUIA
B JBYMEPHOM IIPOCTPAHCTBE XOpoIno m3ydena. OmHako KirodeBasi IpobJieMa KOPPEKTHOCTH
CMEITaHHbIX 3314 JJIsi TAKUX YPABHEHUN B MHOTOMEPHBIX OTPAHUIEHHBIX 00JTACTIX OCTAETCS
B HaCTOsIIIee BpeMs HepelreHHoit. B nanHoil pabore ycTaHOBIEHa CMENIaHHas 006/1aCTh, B KOTO-
poit perienne 3a1a4u TpuKoMu JjIs MHOTOMEpPHOTO ypaBHenus JlaBpentbena-buriaaze nmeer
€IMHCTBEHHOE KJIACCHYECKOE PeIleHne.

Kirouesple cioBa. 3agada Tpukomu, cMmernannasi 00/1acTh, KJIACCHYECKOE peIleHne, MHO-
romepuoe ypasraenue JlaBpentbepa-bumanze, chepuaeckne GyHKINN.
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