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Abstract. We study the classification of Dedekind cuts in the field K(α), where K ⊆ R and α is
a positive infinitesimal. The cuts are analyzed according to three criteria: fundamentality, symmetry,
and algebraicity. We prove that every non-principal cut in K(α) that is both non-fundamental and
asymmetric must be algebraic. For such cuts, we construct a sign-changing polynomial whose root
realizes the cut. Furthermore, we investigate the properties of these polynomials and their dependence
on the structure of the base field K. The results contribute to the broader understanding of algebraic
and order-theoretic properties in non-Archimedean extensions of real fields, particularly in the context
of model theory and real algebraic geometry. The classification developed here provides a constructive
approach to identifying algebraic cuts and offers insights into the interaction between infinitesimal
elements and the topological structure of real closed fields.
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1 Introduction

The monograph [5] and the review article [4] present established approaches to the study of
totally ordered fields, which appeared in the works of Artin and Schreier [1] and developed
together with a non-standard analysis, an analysis of non-Archimedean valued fields, and a
model theory. One of the directions for the investigation of ordered fields is connected with
the cut (gap) theory. The theory of cuts dates back to Dedekind’s work and has now received
significant development [11]. The present paper continuous this theme.

Let ⟨F, ·,+, <⟩ be a totally ordered field (by ordered, we will always mean “totally or-
dered”). A pair of non-empty subsets A,B ⊂ F is called a cut, if A < B and A∪B = F . Let,
as in [12], (A,B) be a cut in F , the set A is called a short shore, if there exists a0 ∈ A such
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that for all a ∈ A we have a+ (a− a0) ∈ A, the element a0 is called close to the shore B. If
a shore is not short, then it is called a long shore. If both A and B are long shores, then the
cut (A,B) is called symmetric [12]. If one of the shores is long and the other one is short,
then such a cut (A,B) is called asymmetric [12] (or a ball cut [11]). Let F1 be an ordered
extension of a field F and x ∈ F1. We say that x realizes a cut (A,B) [11, 14], if

∀a ∈ A ∀b ∈ B (a ⩽ x ⩽ b).

We say that a cut (A,B) is algebraic [12, 14], if in some F1 extending F , some x ∈ F1\F
realizes (A,B) and is algebraic over F .

A cut (A,B) is called principal, if A has a largest element or B has a smallest element;
otherwise (A,B) is called non-principal (or a gap [11], or an irrational cut [2]). A cut (A,B)
is called fundamental [12], if for all positive ε ∈ F there exist x ∈ A and y ∈ B such
that y − x < ε. A fundamental non-principal cut is also called a Scott cut [14]. From the
definitions, it is easy to see that every non-principal fundamental cut is symmetric; every
principal fundamental cut is asymmetric and non-algebraic.

Let L be a totally ordered set. A subset H ⊂ L is said to be cofinal to L, if

∀l ∈ L ∃h ∈ H (l ≤ h).

A subset H ⊂ L is said to be coinitial to L, if

∀l ∈ L ∃h ∈ H (l ≥ h).

The least cardinality of a set among all sets that are cofinal (coinitial) to L is called
cofinality (coinitiality) of the set L and is denoted cf(L) (coi(L)).

Throughout this paper N is the set of all natural numbers, Q is the field of all rational
numbers, R is the field of all real numbers.

We write F+ for {x ∈ F | x > 0}. For x, y ∈ F+, let x ∼ y if there exists n ∈ N such
that

x ≤ ny and y ≤ nx.

Let GF be the set of equivalence classes of F mod ∼. We denote the ∼-class of an element
x by x̂, which is an element of GF . Note that

x̂ = {y ∈ F+ | (∃ m,n ∈ N)
1

n
x ≤ y ≤ mx} = {y ∈ F+ | (∃ n ∈ N)

1

n
x ≤ y ≤ nx}.

We write x ≪ y if nx < y for any n ∈ N. Clearly, x̂ < ŷ ⇔ x ≪ y. We put x̂ · ŷ = x̂ · y.
So, we obtain that (GF , ·, <) is a totally ordered group. If an ordered group is isomorphic
to GF , then this group is called a group of Archimedean classes of F (an Archimedean group
of F ). There exists an ordered embedding of the group (GF , ·, <) in the field F , so we may
assume that GF ⊂ F [5, 10, 9, 4, 12].
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An ordered field F is real-closed if it does not have a proper algebraic extension to an
ordered field, or equivalently, if every positive element in F is a square and every polynomial
over F of an odd degree has a root in F . The Artin-Schreier theorem asserts that every
ordered field F has an algebraic extension to a real-closed field F whose order is an extension
of the order on F , and that F is unique up to an isomorphism that leaves all elements of F
fixed [5].

2 Cuts of a totally ordered field of rational functions over an Archimedean field

Let K be a totally ordered subfield of R, Q ⊆ K ⊆ R; we have GK = {1}, thus the field K is
Archimedean. Let K(α) be a field of rational functions over K, where α is a transcendental
element over K. A transcendental extension of K of transcendence degree 1 is obtained by
forming the polynomial ring K[α] with indeterminate α and taking its quotient field. We
define the order relation on the set K(α) so that α is an infinitesimal: for a polynomial with
coefficients from K, we put

rkα
n−k + rk−1α

n−k+1 + ...+ r0α
n > 0,

if the coefficient rk at the lowest degree α is greater than zero; the fraction is assumed
to be greater than zero if the numerator and the denominator of the fraction are of the
same sign [5, 3]. For example, (3α5 − 2α7 − 0, 4α2) < 0, because −0, 4 < 0. Note that
the field K(α) is non-Archimedean and its group of Archimedean classes is identified with
GK(α) = {αk | k ∈ Z}. By this order, for all n ∈ N the following hold

0 < · · · < α3 < α2 < n · α <
1

n
=

1

n
α0 < α−1 < . . .

We have the following chains of extensions [4]:

K ⊊ K(α) ⊊ K((α)) ⊊ K((Q)) =
{∑

γ∈Γ
rγα

γ | γ ∈ Q, rγ ∈ K, Γ ⊂ Q, Γ is well-ordered
}
,

the last field is called a Hahn field. Aslo we have the following:

Q(α) ⊆ K(α) ⊆ K(α) ⊆ R(α) ⊊ R((α)) =
{ ∞∑

n=m

rnα
n | m ∈ Z, rn ∈ R

}
,

where the last field is a field of formal Laurent series over R.
It is known that

√
1 + α =

∑
k∈N∪{0}

1
2(

1
2 − 1)(12 − 2) · .. · (12 − k + 1)

k!
αk ∈ K((α)) \K(α)

eα = 1 + α+
α2

2!
+ · · · ∈ K((α)) \K(α).
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We consider the field K(α) from the point of view of classifying cuts by type:

fundamental/non-fundamental, symmetric/asymmetric, algebraic/non-algebraic.

To define the cut (A,B), it suffices for us to know A, then B = K(α) \A.
For Q ⊆ K ⊊ K ⊊ R; there are the following examples of cuts:

fund. sym. alg. example
1 1 1 1 A = {x ∈ K(α) | x <

√
1 + α}

2 1 1 0 A = {x ∈ K(α) | x < eα}
3 1 0 1 this case is not possible for any field
4 1 0 0 A = {x ∈ K(α) | x ⩽ α}
5 0 1 1 A = {x ∈ K(α) | x < x0, x0 ∈ K \K}, if K \K ̸= ∅
6 0 1 0 A = {x ∈ K(α) | x < x0, x0 ∈ R \K}, if R \K ̸= ∅}
7 0 0 1 A = {x ∈ K(α) | ∃n ∈ N x < nα}
8 0 0 0 this case is not possible; we prove it in Theorem 1

Details of the analysis of the given examples of cuts (1)–(7) for K(α) with K = Q can be
found in [13], for the examples that are in the table above, the reasoning is similar.

For a more general case, we prove the following.

Theorem 1. Let K be a totally ordered field, Q ⊆ K ⊆ R. There is no non-principal cut in
the field K(α), which is non-fundamental, asymmetric, and non-algebraic.

Proof. We consider a non-principal, non-fundamental, asymmetric cut (A,B) of the field
K(α), where the set A is short, and the set B is long. The case where A is long and B is
short is treated similarly. We prove that the cut (A,B) is algebraic. To do this, it suffices
to show that there is a polynomial with coefficients from the field K(α), the root of which is
between the sets A and B.

1) From the non-fundamentality condition, we first prove that there exists k0 ∈ Z such
that k0 = min{k ∈ Z | (∀x ∈ A)(∀y ∈ B) y − x > αk}. Indeed, the set {αk | k ∈ Z}
is coinitional and it is also confinal to the set (0,+∞)K(α). By the condition there exists
ε ∈ K(α)+ such that (∀x ∈ A)(∀y ∈ B) y − x ⩾ ε. Then there is k ∈ Z such that
αk < ε ⩽ αk−1, so the set M = {k ∈ Z | (∀x ∈ A)(∀y ∈ B) y − x > αk} is not empty; in
addition, if k belongs to M , then all integers larger than k belongs to M . Similarly, there
exist m ∈ Z, x ∈ A, and ∃y ∈ B such that y−x < αm. Then m ̸∈ M and m is a lower bound
of the set M . Therefore, the set M has the smallest element, which we denote by k0.

2) Since (A,B) is non-principal, we obtain that for all x ∈ A and m ∈ N it holds that
(x+mαk0 ∈ A). Indeed, let x ∈ A, m ∈ N. Assume x1 = x+ αk0 ∈ B. Then x1 − x = αk0 ,
but it should be x1 − x > αk0 , for a contradiction. So x1 = x+αk0 ∈ A, further by induction
we obtain that x2 = x1 + αk0 ∈ A, . . . , xm = xm−1 + αk0 = x0 +mαk0 ∈ A.
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3) Note that there are no other Archimedean classes in GK(α) between the Archimedean

classes α̂k0 = {x ∈ K(α) | ∃ m,n ∈ N 1
nα

k0 ≤ x ≤ mαk0} and α̂k0−1.
4) Let x0 be close to B, x1 ∈ A, and x0 < x1. Then for any x ∈ A with x1 < x, we have

that x1 + (x1 − x) < x+ (x− x0) ∈ A and x1 + (x1 − x) ∈ A, which by definition means that
x1 is also close to B.

5) We prove there exists x0 ∈ A such that x0 is close to B and x0+αk0−1 ∈ B. According
to 1), from the minimality of k0 there exist x1 ∈ A and y1 ∈ B such that y1 − x1 ⩽ αk0−1.
If x1 is close to B, then x0 = x1. If this is not the case, then due to the asymmetry of the
cut, there exists x0 ∈ A that is close to B and larger than x1. So, y1 − x0 ⩽ y1 − x1 ⩽ αk0−1,
y1 ⩽ x0 + αk0−1, and x0 + αk0−1 ∈ B.

Next, in the proof of the theorem, we assume that x0 as in 5).
6) We show that x0 + 1

nα
k0−1 ∈ B for all n ∈ N. Assume the contrary: there exists

n0 = max{n ∈ N | x0 + 1
nα

k0−1 ∈ B}. Then x0 +
1
n0
αk0−1 ∈ B, x0 +

1
n0+1α

k0−1 ∈ A. But
since x0 is close to B, so (

x0 +
1

n0 + 1
αk0−1

)
+

m

n0 + 1
αk0−1 ∈ A

for all m ∈ N. For m = n0 we obtain that x0 + αk0−1 ∈ B, that contradicts the choice of x0,
see 5).

7) We prove that there are no elements from K(α) between the sets {x0 + mαk0}m∈N
and {x0 + 1

nα
k0−1 }n∈N. Assume the contrary; let there exist x ∈ K(α) such that

x0 +mαk0 < x < x0 +
1

n
αk0−1

for all m,n ∈ N. We have x ∈ A ⊔ B. If x ∈ A then ∀m ∈ N mαk0 < x− x0 < αk0−1, then
according to 3), x − x0 ∈ α̂k0−1 and there exists n ∈ N such that 1

nα
k0−1 ⩽ x − x0, which

implies that x ∈ B. If x ∈ B then ∀n ∈ N x− x0 < 1
nα

k0−1, and x− x0 ∈ α̂k0 , there exists
m ∈ N such that x− x0 < mαk0 and x ∈ A.

8) From 7) it follows that {x0 +mαk0}m∈N is confinal to A, and {x0 + 1
nα

k0−1 }n∈N is
coinitional to B.

9) It remains to insert the root of the polynomial with coefficients from K(α) between
the sets A and B. To do this, take, for example, the element αk0−1/2, it does not belong
to K(α) and it is in the extension between the elements of the Archimedean classes α̂k0 and
α̂k0−1, so A < x0 + αk0−1/2 < B. We select a polynomial with coefficients from K(α) with
the root x0 + αk0−1/2, say, t = x0 + αk0−1/2. Then an example of the desired sign-changing
polynomial in the cut (A,B) is the following: f(t) = (t− x0)

2 − α2k0−1.

The proof of the theorem defines an algorithm for searching for a sign-changing polynomial
on its asymmetric, non-fundamental cut in K(α) for Q ⊆ K ⊆ R.
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Examples (1)–(8) give a complete classification of cuts in K(α), for Q ⊆ K ⊊ K ⊊ R by
the type of fundamentality, symmetry, and algebraicity.

Note that there exist fields of formal power series with non-principal, non-fundamental,
asymmetric, non-algebraic cuts [8].
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Галанова Н.Ю. АРХИМЕДТIК ӨРIС ҮСТIНДЕГI РАЦИОНАЛ ФУНКЦИЯЛАР
ӨРIСIНIҢ СЫЗЫҚТЫ РЕТТЕЛУIНДЕГI КЕСIНДIЛЕР

Бұл мақалада K ⊆ R және α — оң шексiз кiшi элемент болған жағдайда, K(α) өрiсiн-
дегi Дедекинд кесiндiлерiнiң фундаменталдық, симметриялық және алгебралық түрлерi
бойынша жiктелуi қарастырылады. K(α) өрiсiндегi әрбiр принциптi емес, әрi фунда-
менталды емес және симметриялы емес кесiндi мiндеттi түрде алгебралық болатыны
дәлелденедi. Мұндай кесiндiлер үшiн осы кесiндiнi жүзеге асыратын, таңбасын өзгер-
тетiн көпмүше құру әдiсi ұсынылады. Сонымен қатар, бұл көпмүшелердiң қасиеттерi
мен олардың базалық өрiс K-тiң құрылымына тәуелдiлiгi зерттеледi. Алынған нәти-
желер нақты сандар өрiсiнiң Архимедке жатпайтын кеңейтулерiнiң алгебралық және
тәртiптiк қасиеттерiн тереңiрек түсiнуге мүмкiндiк бередi, әсiресе модельдiк теория мен
нақты алгебралық геометрия тұрғысынан. Ұсынылған жiктеу алгебралық кесiндiлердi
конструктивтi түрде сипаттауға жағдай жасап, шексiз кiшi элементтердiң нақты жабық
өрiстердiң топологиялық құрылымымен байланысын айқындайды.

Түйiн сөздер: кесiндi (бос орын), сызықты реттелген өрiс, бөлiндi өрiс, формалды
дәрежелiк қатар.

Галанова Н.Ю. СЕЧЕНИЯ В ЛИНЕЙНО УПОРЯДОЧЕННОМ ПОЛЕ РАЦИОНАЛЬ-
НЫХ ФУНКЦИЙ НАД АРХИМЕДОВЫМ ПОЛЕМ

В данной работе исследуется классификация (Дедекиндовых) сечений в поле K(α),
где K ⊆ R, а α — положительная бесконечно малая величина. Сечения рассматрива-
ются с точки зрения фундаментальности, симметричности и алгебраичности. Доказа-
но, что каждое собственное сечение в K(α), которое одновременно нефундаментально и
несимметрично, является алгебраическим. Для таких сечений построен меняющий знак
многочлен, корень которого порождает соответствующее сечение. Полученные резуль-
таты способствуют более глубокому пониманию алгебраических и порядковых свойств
неархимедовых расширений вещественных полей, особенно в контексте теории моделей
и вещественной алгебраической геометрии. Классификация сечений обеспечивает кон-
структивный подход к распознаванию алгебраических сечений и выявляет взаимосвязь
между бесконечно малыми элементами и топологической структурой вещественно за-
мкнутых полей.

Ключевые слова: сечение, линейно упорядоченное поле, поле частных, формально
степенной ряд.
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