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Roza E. Uteshova

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
r.uteshova@math.kz

Communicated by: Anar T. Assanova

Received: 31.05.2025 * Accepted/Published Online: 10.06.2025 % Final Version: 31.05.2025

Abstract. This paper addresses the solvability of two-point boundary value problems for linear
differential-algebraic equations with time-varying coefficients. The proposed method employs the stan-
dard canonical form to decouple the system into an ordinary differential part and an algebraic part.
By introducing an appropriate parameter, we transform the original problem into the solvability of an
associated linear algebraic system. This reduction leads to a constructive solvability criterion for the
boundary value problem. A comprehensive example is provided to demonstrate the applicability and
effectiveness of the proposed approach.
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1 Introduction

We consider a system of linear differential-algebraic equations with time-varying coefficients,
given by
E()i(t) = A@)z(@) + f(t), te(0,T), (1)

subject to the boundary condition

Bz(0) + Cx(T) = d, (2)
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where E, A € C([0, T]; R"*"™) are given matrix-valued functions, f(t) € C([0,T],R") is a given
forcing term, and B,C € R™*", d € R specify the boundary constraints; 7' > 0. Since the
matrix F(t) may be singular for all ¢ € [0, T}, equation (1) constitutes a differential-algebraic
system rather than a standard ordinary differential equation.

A function x € C1([0,T],R") is called a solution of the boundary value problem (1)-(2)
if it satisfies the differential-algebraic equation (1) and the boundary condition (2).

Differential-algebraic equations (DAEs) play a central role in the modeling and numer-
ical simulation of constrained dynamical systems across numerous scientific and engineering
domains (see, e.g., [8, 9, 11]).

Two-point boundary value problems for DAEs arise naturally in practical settings, includ-
ing the simulation of electrical circuits and mechanical systems with multiple interconnected
components. Initial progress in this area was driven by extending classical techniques — such
as shooting and collocation methods — originally developed for ordinary differential equations,
to the DAE context [1, 2, 7, 12]. A comprehensive summary of these developments can be
found in [10].

The framework proposed in [10] provides a broad foundation capable of handling nonlinear
problems as well as time-dependent and operator-valued coefficients, where the coefficient
matrices E(t) and A(t) are understood as linear operators in Banach spaces. This line of
research is grounded in a projector-based methodology, as systematically developed in [9].

The standard canonical form (SCF) for time-varying DAEs was introduced by Campbell
[5, 6] as a structural tool to decouple a DAE into an ordinary differential part and a purely
algebraic part involving a pointwise strictly lower triangular matrix. Building upon this
foundation, Berger and Ilchmann [4] developed a detailed solution theory for time-varying
DAEs that can be transformed into SCF. Their contributions include a rigorous definition of
SCF as a canonical form, the derivation of variation-of-constants formulas for inhomogeneous
systems, and the demonstration that SCF-transformability is equivalent to analytic solvability.
Furthermore, they established connections between SCF and other approaches to the analysis
of time-varying DAESs, including the differentiation index, the derivative array method, and
the strangeness index. An additional practical outcome of their work is an algorithm for
computing the transformation matrices that bring a DAE into SCF.

In the present work, we apply the standard canonical form to investigate the solvability
of two-point boundary value problems for time-varying linear DAEs of the form (1)-(2). By
transforming the system into SCF, we obtain a decoupled representation that separates the
differential and algebraic components of the solution. To treat the boundary conditions, we
introduce a parameter that represents the initial value of the differential part of the solution
at ¢ = 0. This leads to a parametrized initial value problem for the differential part and an
explicit representation of the algebraic component. Substituting the resulting expressions into
the boundary condition reduces the original boundary value problem to a system of linear
algebraic equations in terms of the introduced parameter. Then, a solvability criterion is
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derived by analyzing this algebraic system.

The structure of the paper is as follows. In Section 2, we review the standard canonical
form for time-varying linear DAEs and explain how it decouples the system into dynamic and
algebraic components. We also recall the concept of the generalized inverse and its application
to the solution of linear algebraic systems. Section 3 contains the main result: we apply the
SCF in combination with a parameterization technique to derive a solvability criterion for the
boundary value problem and provide an explicit representation of the solution. In Section 4,
we demonstrate the applicability of the method through an illustrative example, in which we
explicitly solve a boundary value problem and verify the conditions of the main theorem.

2 Preliminaries

2.1. Standard canonical form for linear DAEs

We consider the homogeneous system associated with the inhomogeneous differential-algebraic
equation (1), given by
E@)x(t) = A(t)z(t), (3)

where E(t), A(t) € C(Z; R™ ") are matrix-valued functions defined on an open interval Z C R.
A function =z : J — R" | with J C Z, is called a solution of equation (3) if it is
continuously differentiable on J and satisfies the equation for all t € J. If J = Z, the
solution is called a global solution. For brevity, we identify the matrix pair (£, A) with the
DAE (3).
It is known that if (V, W) € C(Z; G1,(R)) x C1(Z; G1,,(R)), then x : J — R™ solves (3)
if, and only if, 2(¢) := W (¢)"1x(t) solves

V(O E@)W(t): = [V() AW (t) — V(t)E(t)W(t)]z.

In what follows, GI,(R) denotes the general linear group of degree n, i.e. the set of all
invertible n x n matrices over R.

Definition 1. [8, Def. 3.3] The DAEs (Ej, A1), (Ea, A2) € C(Z; R™™)? are said to be equiv-
alent if there exist
(V,W) € C(ZT; GL,(R)) x C'(Z; Gl,,(R))

such that .
Ey=VEW, Ay=VAW-VEW,
in which case, we write

V;L/V(

(Eq, Ar) Ey, As).

This equivalence preserves the solution structure of the DAEs and provides a natural
framework for transforming systems into canonical forms.

KAZAKH MATHEMATICAL JOURNAL, 23:3 (2023) 6-17



Boundary value problems in time-varying linear DAEs. .. 9

Definition 2 (Standard canonical form [5]). The DAE (E, A) € C(Z;R™")? is said to be
transferrable into standard canonical form if and only if there exist

(V,W) € C(Z; GL,(R)) x C1(Z; G,(R))

and integers ny,ne € Ny such that

V,W I,, 0O J 0
(O A

where N : Z — R™*"2 ig pointwise strictly lower triangular, and J : Z — R™*"1,

Recall that a matrix N (t) is called pointwise strictly lower triangular if all entries on and
above the main diagonal vanish for all ¢t € 7.

The standard canonical form separates the differential and algebraic components of the
DAE in a structurally transparent way. In the transformed system (4), the upper block
corresponds to an ordinary differential equation involving the matrix J(t), while the lower
block represents a purely algebraic constraint defined by the pointwise strictly lower triangular
matrix N(¢). This decoupling is particularly useful for analyzing qualitative properties of the
system, such as solvability and stability, and serves as the foundation for the parameterization
method employed in this paper.

2.2. Generalized inverse: definitions and application to linear algebraic sys-
tems

Definition 3. Let A € R™*" be a given matrix. A matrix A9 € R™*™ is called a generalized
inverse of A if it satisfies

AAYA = A.

It is well known that such an inverse always exists, regardless of the rank or dimensions
of A. This notion is sometimes referred to as a {1}-inverse, since it fulfills only the first
of the four Penrose conditions used in defining the Moore-Penrose pseudoinverse (see [3]).
Importantly, the generalized inverse is not unique in general.

Generalized inverses are a powerful tool for analyzing the solvability of linear systems.

Given a system
Az = b,

with A € R™*™ ph € R™, the system has at least one solution if and only if there exists a
generalized inverse AY such that

AAIb =b. (5)
In that case, the complete set of solutions is given by

x = A9b 4 (I, — AIA)z, (6)
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where z € R" is arbitrary. Condition (5) is equivalent to requiring that b € ran(A).
When A is square and invertible, its unique generalized inverse coincides with the standard
inverse A7,

We also make use of special cases of generalized inverses: the left and right inverses, which
are applicable to full-rank rectangular matrices.

Definition 4. A matrix AZI € R™ "™ ig called a left inverse of A if
ATA =1,
where I, is the n x n identity matrix.

A left inverse exists if and only if A has full column rank, i.e., rank(A) = n. One example
is the matrix (AT A)"*AT, which serves as a left inverse when A has full column rank.

Definition 5. A matrix A§1 € R™™™ ig called a right inverse of A if
AAG = I,
where I, is the m x m identity matrix.

A right inverse exists if and only if A has full row rank, i.e., rank(A) = m. In this case,
the matrix AT(AAT)~! is an example of a right inverse.

3 A solvability criterion for the boundary value problem (1)—(2)

In this section, we analyze the boundary value problem (1)—(2) for a time-varying differential-
algebraic system with two-point boundary conditions. We assume that the DAE is transferable
into the standard canonical form on the interval [0,7]. Under this assumption, the system
can be transformed into a decoupled form consisting of an ordinary differential equation and a
purely algebraic equation, as described in Section 2.1. This structure enables us to reduce the
boundary value problem to a parametric initial value problem and a system of linear algebraic
equations involving a suitable parameter. Based on this reduction, we formulate a solvability
criterion in terms of the consistency of the associated algebraic system.

Suppose that the DAE (E, A) € C([0, T]; R™*™)? is transferable into SCF via some pair
of matrix functions (V, W) € C([0,T]; G1,(R))2. This means that, under the transformation

o) = wiowe) = wee) [11). )

where the splitting corresponds to the block sizes n; and ng in the SCF (4), and after multi-
plying equation (1) from the left by V(¢), the system transforms into

() =IOy (t) + f1(t), (8a)

N(t)g2(t) = y2(t) + f2(t), (8b)
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with

where fl € C([Oa T]v RN1)7 f2 € C([Oa T]v RHZ)
The transformation (7) also induces a decomposition of the boundary condition matrices:

B:= BW(0) = (By,By), C:=CW(T)=(Cy,Cy),
where El, 5’1 e R and Eg, C~’2 € R*"2 Hence, the boundary condition (2) becomes
B1y1(0) + Bay2(0) + Cry1 (T) + Coya(T) = d. (9)

The decoupled system (8) consists of an ordinary differential equation (8a) for the com-
ponent y;, and a pure DAE (8b) for y»(¢t). To analyze the boundary value problem, we aim
to express the general solutions of both subsystems and substitute them into the transformed
boundary condition (9).

Since the algebraic subsystem (8b) does not involve derivatives of y2(¢) in an invertible
manner, it does not require initial conditions for its solution. Under the assumption that
fa(t) € C™(]0,T];R"™2), the solution can be written explicitly in terms of fo(¢) and its deriva-
tives (see, e.g., [4]) as

no—1

k
n ==X (N0 ) £ (10

k=0
In contrast, the differential subsystem (8a) constitutes an initial value problem, which
requires specification of an initial condition at ¢ = 0. To this end, we introduce a parameter

A= y1(0> e R™

and define the function
z(t) == y1(t) — A

The function z(¢) then satisfies the following initial value problem:
z2=J(t)[z(t) + Al + fi(t), 2(0)=0. (11)

For fixed A, the solution of the initial value problem (11) can be expressed using the
variation of constants formula. Let ®(¢, s) denote the evolution operator (or transition matrix)
associated with the homogeneous system

z2=J(t)z,

satisfying

d
Z0(t5) = J(O)®(t,s), B(s,5) = I,

KAZAKH MATHEMATICAL JOURNAL, 23:3 (2023) 6-17



12 Roza E. Uteshova

Then the solution z(t) of (11) is given by

A1) = / B(t,7) [J(F)A + f1(7)] dr- (12)
0

Recalling that yi(t) = z(t) + A, we obtain the following representation of the solution
yi(t):
¢ ¢
() = | Iy + / B(t, 7)J(r)dr | A+ / B(t, ) fo(r)dr. (13)
0 0
Substituting the expressions for y;(0) = A, y1(T") from (13), and y2(0), y2(T) from (10)
into the transformed boundary condition (9), we obtain a linear algebraic system for the
unknown parameter A € R™:

~

QAr=d, (14)

where

" " T
Q =B+ Ci (I, +/ (T, 7)J(r)dr) € R,
0

N " T
Ti=d=Co(1 + [ o(T.A(r)r) (15)
no—1 k ng—1 k
+ By §:<N@i>fﬂw +Cy §:<N®i>fx4 eR.
k=0 t=0 k=0 t=T

This is a linear system in the unknown X, whose solvability determines whether the
original boundary value problem admits a solution. In the next step, we will formulate the
solvability criterion based on this algebraic system. As discussed in Section 2, equation (14)
has a solution if and only if d € ran(Q). If this condition is fulfilled, we determine A by

A=Q%d+ (I, — QIQ)c

where ¢ € R™ | substitute it into the solution formula (13), and combine it with (10). Ap-
plying the inverse transformation x(¢) = W (t)y(t), we then obtain the general solution of the
boundary value problem (1)—(2).

We are now in a position to state the main result.

Theorem 6. Suppose that:

(i) the DAE (E,A) € C([0,T);R™™)?2 is transferable into SCF via some pair (V,W) €
C([0,T); GL.(R))?;
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(i) fr € C(0, TER™), fo € C™([0, T[;R™).

Then the boundary value problem (1)—(2) admits a solution x € C1([0,T]; R™) if and only
if
d € ran(Q). (16)

In this case, every solution x(t) is given by

(Ins + Jo @) T (7) dr ) (Q9d + (I, = QUQ)e) + fy @(t,7)fi(r
z(t) = W(t) _nQE_l (N(t)%> 0 , (17)
k=0

where ¢ € R™ s an arbitrary vector and Q9 is a generalized inverse of Q.

4 An illustrative example

In this section, we apply Theorem 6 to a concrete boundary value problem based on Exam-
ple 5.6 from [4]. In that work, an algorithm was proposed for transforming real analytic matrix
pairs (E, A) into SCF. Rather than carrying out the transformation ourselves, we utilize the
SCF of a DAE that has already been computed in the cited example. Our aim is to verify
the solvability of the corresponding boundary value problem and to explicitly construct its
solution.

Consider the time-varying DAE of the form

E(t)a(t) = A()x(t) + (1), t€0,T],
together with the boundary condition
Bz(0) 4+ Cx(T) = d.
We define the coefficient matrices and right-hand side as follows:
sint cost 0

E(t) = 0 0 0],
—costsint sin?t 0

sint — cost cost+sint 0
A(t) = —cost sint 0o |,
—sin?t —sintcost t?+1
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-1 10
fey=| 0 |, B=1I;, C=12 1
—t3 —t 0 =«

1/7 1
0|, d=10|, T=m.
1 0

As shown in [4], the system is transferable into SCF via the transformation pair (V(t), W(t)),
with
1 0 0

1 0 0
(B@.a@) =0 5, s fo o]
omo 0 0 1
where
1 0 0
viy=" ],
OOW

sint —cost 0
W(t) = |cost sint 0
0 0 1

Thus, in SCF, the system is characterized by the matrices

0 0
J(t)=1, N(t)= | sint

t2+1

, np =1, ng=2.

We now proceed to apply Theorem 6 to verify the solvability of the boundary value
problem and to construct its explicit solution.

We first compute the transformed inhomogeneity:

= o O
o
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Il

O =
™
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Il

o O

= O

Q

Il

Q

=

3

N—

Il

|

—

[N]
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Q
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|
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Il
SN =
— Oa=
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It is clear that assumptions (i) and (ii) of Theorem 6 are satisfied. We now verify the
solvability condition (14), which requires computing the matrix @ and the right-hand side d
from equation (15). These expressions involve the transition matrix ®(, s) associated with the
homogeneous differential equation Z = J(t)z, which in this case reduces to Z = z. Therefore,
P(t,s) = el 5.

Using this, we compute

- 0
Q:§1+51<1+/ e’erT): 1—e€"
0

—me™

and

d=d-C /07r TR dr+ By L) + N0 +Ca [0+ NOLD)] =

=7
0
=|1—¢€"
—me™
Thus, since d e ran(Q), the solvability condition is satisfied, and the boundary value
problem admits a solution. The solution can then be computed explicitly using formula (17).
The matrix @ € R**! has full column rank, so we may use its left inverse as a generalized
inverse (see Section 2). This yields

QY = (QTQ)_IQT = ((1 -4+ (we”)2)_1 [0 1—¢€" —77671 )

Substituting this expression into the solution formula (17), and simplifying, we obtain the
unique solution of the boundary value problem

sint
x(t) = |cost
t

This confirms the applicability of Theorem 6 and illustrates the effectiveness of the stan-
dard canonical form in analyzing the solvability of boundary value problems for time-varying
DAEs.
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Vremosa P. E. ATHBIMAJIBI KOY®OUIIMEHTTEPI BAP ChI3LIKTHI ANPOEPEH-
HUAJIABI-AJITEBPAJIBIK TEHAEYJIEP YIIIH ITETTIK ECEIITEP: CTAHIAPTTHI
KAHOH/JBIK @OPMAHBI KOJIZIAHA OTBIPBIIT ITEIIIJIIMAITTH TAJIZIAY

Byn makanaia aiiabivasiel KoadduimenTTepi 6ap ChI3BIKTHIK, Aud depeHimaib-aareo-
PaJIbIK TeH ey Iep YIIMiH eKi HyKTe I MeTTiK eCerrTep il MemiiMILIr KapacThIPhLIaIbl. ¥ Chl-
HBUIFAH 9JiC CTAaHIapPTTHl KAHOHJBIK (DOPMAaHBLI KOJIaHyra HerisjenareH, Oy »KyieHi »Koii
nuddepeHnnaIbK TeHIeyTre XKoHe Ta3a aJIredpaIblk, 00JIiKKe aXKbIpaTyFa MyMKIHIIK O6epei.
TuicTi mapamMerp eHrizy apKbLIbl OACTAIIKBI €Cell COfKeC CHIZBIKTHIK, aJreOpaJIblK, TeHIeyIep
JKyiteciniy memiiMaisirine kearipisesi. Horuskecine meTTik ecenTiy menriTiMIinirigie KoH-
CTPYKTUBTI KPUTEPUili AJTbIHABI. ¥ CBIHBLIFAH OICTiH, THIMIIJIITT HAKTHI MBICAJ apKbILIBI KOp-
ceTiesni.
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Tyitin ce3aep: meTTIK ecer, aifHbIMAILI KO3(MPUIMeHTTePi 6ap CHI3BLIKTHI guddepeH-
IMAaJIIbI-aare0pasblK TeHJIEY, CTaHIaPTThl KAaHOHIALIK, (hopMa, »KAJIIbLIAHFAH KEPI MaTPHIA.

Vremosa P. E. KPAEBBIE 3AJIAYN JI/19 JIMHENHBIX INOOEPEHIINIAJILHO-
AJITEBPAMYECKUX YPABHEHHI C IIEPEMEHHBIMU KOSOOUIIMEHTAMU: AHA-
JIN3 PABPEIIMMOCTHU C IMPUMEHEHUEM CTAHJAPTHON KAHOHMYECKOMN
OOPMBI

B craTbe paccMaTpuBaeTcs pasperimMoCThb IBYXTOUETIHON KpaeBoil 3a/1a9n JJIsi CUCTEMbI
JmHeHHbIX auddepeHnuabHO-aaredpandecknxX ypaBHEHUH ¢ IepeMeHHBIMU KO3 pUIIneHTa-
mu. IlpenaraeMbrit MeTO OCHOBaH HA KCIIOJbL30BAHUM CTAHIAPTHON KAHOHUYECKOH (POPMBI,
[TO3BOJIAIONIEN pACIHIEIJIEHUE CUCTEMbI Ha OOBIKHOBeHHOE nuddepeHIuajibHoe ypaBHEHHE U
YUCTO AJIreOpanvIecKyro 9acThb. [lyTéM BBejeHUsT MOAXO/ISIIETO apaMeTpa UCXOIHAST 3a1a1a
CBOJIUTCS K UCCJIEJOBAHUIO PA3PEITUMOCTH COOTBETCTBYIOIIEH CUCTEMbI JIMHERHBIX aJredpan-
JecKUX ypaBHeHUil. B pe3y/ibrare moJydeH KOHCTPYKTUBHBIN KPUTEPUIl Pa3peIMMOCTA Kpar-
eBoil 3a7aun. DHGEKTUBHOCTD METO/IA HILTIOCTPUPYETCsT Ha HOAPOOHOM IIpUMeEpE.

KuroueBbie cisioBa: kpaeBas 3ajada, JimHeliHOe udbepeHmaibHo-aIredpanieckoe
yPaBHEHUeE C ITepeMeHHbIMI KO3 dUIimenTaMn, CTaHapTHas KAaHOHUIeCcKas (popma, 00o0IeH-
Hast oOpaTHas MATPUIIA.
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