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Abstract. Here we study non-trivial expansions of 1-transitive ordered theories preserving 1-transitivity.
In particular, expansions of weakly o-minimal linear orderings by equivalence relations, unary functions
and arbitrary binary relations were investigated. On the base of the obtained results values of ranks for
various families of weakly o-minimal theories were found.
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1 Preliminaries

Let L be a first-order countable language. Throughout this paper we consider L-structures
and assume that L contains a binary relation symbol <, which is interpreted as the linear
ordering in these structures.

We will say that a linearly ordered structureM := 〈M,<, . . .〉 is 1-is transitive if tp(a/∅) =
tp(b/∅) for any a, b ∈M .

Example 1. Let M := 〈ω,<〉, where ω is the ordering on the set of natural numbers.
Clearly, M is not 1-transitive, since for any a, b ∈ M with condition a 6= b we have that
tp(a/∅) 6= tp(b/∅).

Example 2. Let M := 〈Z, <〉, where Z is the set of integers. Then it’s obvious that M is
1-transitive.
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Fact 1. Let M be a 1-transitive linearly ordered structure. Then
(1) M has neither the smallest nor the largest elements.
(2) Any ∅-definable subset of the structure M coincides with the universe of the structure.

An open interval I in a structure M is a parametrically definable subset of the structure
M of the form

I = {c ∈M : M |= a < c < b}

for some a, b ∈M ∪{−∞,∞} where a < b. Similarly, we can we can define closed, semi-open-
semi-closed, etc. intervals in M so that, for example, an arbitrary point of the structure M
is itself a (trivial) closed interval.

A subset A of a linearly ordered structure M is called convex if for any a, b ∈ A and
c ∈ M whenever a < c < b we have c ∈ A. A weakly o-minimal structure ( [1]) is a linearly
ordered structure M = 〈M,=, <, . . .〉 such that any definable (with parameters) subset of the
structure M is a union of finitely many convex sets in M . Recall that such a structure M is
called o-minimal if every definable (with parameters) subset of the structure M is a union of
of finitely many intervals and points in M . Real closed fields with a proper convex valuation
ring provide an important example of weakly o-minimal (not o-minimal) structures.

Proposition 1. Let M be an 1-transitive o-minimal structure. Then either 〈M,<〉 is a dense
linear ordering without endpoints, or 〈M,<〉 is a discrete linear ordering without endpoints.

Proof of Proposition 1. Suppose the contrary: 〈M,<〉 is neither a dense linear ordering
without endpoints nor a discrete linear ordering without endpoints. If 〈M,<〉 has any end-
point, it will contradict Fact 1. Therefore, assume that 〈M,<〉 has no endpoints. Consider
the following formula:

θ(x) := ∀y1∀y2[y1 < x < y2 → ∃t1∃t2(y1 < t1 < x < t2 < y2)].

By virtue of the assumption θ(M) 6= M and θ(M) 6= ∅. Whence, by virtue of Fact 1 we
again come to a contradiction.

Corollary 1. Let M be an 1-transitive (weakly) o-minimal linear ordering. Then M is
elementarily equivalent to 〈Q, <〉 or M is elementarily equivalent to 〈ω∗ + ω,<〉.

Let T be a family of complete theories of a fixed signature Σ, and let φ be an arbitrary
Σ-proposition. Then the set

Tφ := {T ∈ T | T |= φ}

is called a φ-neighborhood of the family T .

Definition 1. [2] Let T be a family of complete theories of a fixed signature Σ. We define
the rank RS for the family of theories as follows:

(1) RS(T ) = −1 if T = ∅.
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(2) RS(T ) = 0 if T is a finite nonempty family.
(3) RS(T ) ≥ 1 if T is infinite.
(4) RS(T ) ≥ α+1 if there exist pairwise incompatible Σ-propositions φn, n ∈ ω, such that

RS(Tφn) ≥ α.
(5) If δ is a limit ordinal then RS(T ) ≥ δ if RS(T ) ≥ β for any β < δ.
We assume RS(T ) = α if RS(T ) ≥ α and ¬[RS(T ) ≥ α+ 1].
If RS(T ) ≥ α for any α, then we put RS(T ) =∞.
A family T is called e-totally transcendental or total transcendental if RS(T ) is an ordinal.
If a family T is e-totally transcendental with RS(T ) = α ≥ 0, then as the degree ds(T )

of the family T is considered the maximal number of pairwise incompatible sentences φi for
which RS(Tϕi) = α.

Corollary 2. Let T be a family of all 1-transitive (weakly) o-minimal linear orders. Then
RS(T ) = 0, ds(T ) = 2.

Proposition 2. Let T be a linearly ordered theory. If T is 1-transitive, then there is no
expansion of the theory T by any constant symbols preserving 1-transitivity.

Proposition 3. Let T be an 1-transitive weakly o-minimal theory. Then an expansion of
the theory T by an arbitrary unary predicate preserves both the 1-transitivity and weak o-
minimality if and only if such a predicate is universal, i.e., it distinguishes the universe of a
model of the theory T .

Proof of Proposition 3. (⇒) Due to weak o-minimality, any unary predicate must deter-
mine only finitely many convex sets. If any of the distinguished non-empty convex sets does
not coincide with the universe of a model of the theory T , then we get a contradiction with
1-transitivity.

(⇐) If a unary predicate is universal, i.e., in particular, determines a convex set then by
virtue of Theorem 63 [5] such an expansion preserves the weak o-minimality. And since such
a convex set coincides with the universe of a model of the theory T , such an expansion is
1-transitive.

Corollary 3. Let T be an 1-transitive o-minimal theory. Then there is no non-trivial expan-
sion of the theory T by any unary predicate symbols preserving 1-transitivity.

Definition 2. [3, 4] Let T be a countable complete theory, p1(x1), . . . , pn(xn) ∈ S1(∅). We
will say that a type q(x1, . . ., xn) ∈ Sn(∅) is a (p1, . . . , pn)-type if

q(x1, . . . , xn) ⊇
n⋃
i=1

pi(xi).

The set of all (p1, . . . , pn)-types of theory T we denote by Sp1,...,pn(T ).
A theory T is called almost ω-categorical or almost omega-categorical, if for any p1(x1),

. . ., pn(xn) ∈ S1(∅) there exists only a finite number of types q(x1, . . ., xn) ∈ Sp1,...,pn(T ).
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Proposition 4. Let M be an 1-transitive weakly o-minimal structure. Suppose that Th(M)
is almost omega-categorical. Then M is densely ordered.

Proof of Proposition 4. According to Corollary 1, the reduct of a structure M on a
linear order {<} is elementarily equivalent either to 〈Q, <〉 or 〈ω∗ + ω,<〉. Suppose that
M ≡ 〈ω∗ + ω,<〉. Then consider the following formulas:

IS(x)− “x has an immediate successor”,

IP (x)− “x has an immediate predecessor”,

S1(x, y)− “y is an immediate successor of element x”,

Sn(x, y)− “y is nth immediate successor of element x”, n ≥ 1.

By virtue of the assumption made, the following set of formulas is locally consistent:

{IS(x) ∧ IP (x)} ∪ {∃ySn(x, y) | n ≥ 1}.

Hence, there exists p ∈ S1(∅) extending this set of formulas, and an elementary extension
M ′ of the structure M in which type p is realized. Then for each n < ω the set

p(x) ∪ p(y) ∪ {Sn(x, y)}

is consistent, whence the number of (p1, p2)-types is infinite, where pi(xi) := p(xi), i ∈ {1, 2}.
We obtain a contradiction with the almost ω-categoricity of Th(M).

Note that an 1-transitive weakly o-minimal densely ordered structure does not necessarily
have an almost omega-categorical theory.

Example 3. Let M = 〈Q, <,R2〉 be a linearly ordered structure, where Q is the set of
rational numbers. The relation R(x, y) is defined as follows:

R(a, b)⇔ a ≤ b < a+
√

2

for any a, b ∈ Q.
It can be established thatM is an 1-transitive weakly o-minimal structure which is densely

ordered, and Th(M) is not almost omega-categorical.

2 Expansion of theories by equivalence relations

The definition of the rank of convexity of a formula with one free variable was introduced
in [6] and extended to an arbitrary set in [7]:
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Definition 3. [6, 7] Let T be a weakly o-minimal theory, M |= T , A ⊆ M . The convexity
rank of the set A (RC(A)) is defined as follows:

1) RC(A) = −1 if A = ∅.
2) RC(A) = 0 if A is finite and non-empty.
3) RC(A) ≥ 1 if A is infinite.
4) RC(A) ≥ α + 1 if there exist a parametrically definable equivalence relation E(x, y)

and bi ∈ A, i ∈ ω, satisfying the following conditions:

• For any i, j ∈ ω, whenever i 6= j we have M |= ¬E(bi, bj)

• For each i ∈ ω RC(E(M, bi)) ≥ α and E(M, bi) is a convex subset of A

5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ (δ is limit).
For an ordinal α, let RC(A) = α if RC(A) ≥ α and RC(A) 6≥ α+ 1.
If RC(A) = α for some α, then we say that RC(A) is defined. Otherwise (i.e., if RC(A)

≥ α for all ordinals α), we put RC(A) =∞.
The convexity rank of a formula φ(x, ā), where ā ∈M , is defined as the convexity rank of

the set φ(M, ā), i.e.,
RC(φ(x, ā)) := RC(φ(M, ā)).

The rank of the convexity of an 1-type p is defined as the rank of convexity of the set
p(M), i.e., RC(p) := RC(p(M)).

Proposition 5. Let T be an 1-transitive o-minimal theory. Then there is no non-trivial
expansion of the theory T by any equivalence relation partitioning the universe of a model of
T into infinite convex classes, preserving 1-transitivity and o-minimality.

Proof of Proposition 5. By virtue of o-minimality, any equivalence relation E with infinite
convex classes partitions the underlying set of a model of T into only finitely many E-classes,
from which every E-class is ∅-definable. Since by virtue of o-minimality every non-trivial
convex infinite set that is definable must have endpoints, then E must be a universal relation,
i.e., for any a, b ∈M , E(a, b) must hold.

Proposition 6. Let T be an 1-transitive weakly o-minimal linear ordering. Then expanding
the theory of T by an equivalence relation E(x, y) which partitions the universe of a structure
into infinite convex classes, preserves the 1-transitivity and weak o-minimality if and only if
the induced order on M/E is an 1-transitive linear ordering.

Proposition 7. Let T be the family of all 1-transitive weakly o-minimal densely ordered
theories. Then RS(T ) ≥ 1.

Proof of Proposition 7. Note that the 1-transitive weakly o-minimal theories differ by the
rank of convexity: if RC(x = x) = 1, then there is no definable (possibly with parameters)
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equivalence relation partitioning the underlying set of a model of T into infinitely many infinite
convex classes; if RC(x = x) = 2, then such an equivalence relation exists, it partitions
M |= T into infinitely many infinite convex classes, and these classes are densely ordered and
without the leftmost and rightmost classes, and there is no other such an equivalence relation;
if RC(x = x) = 3, then there exist equivalence relations E1(x, y) and E2(x, y), partitioning
the universe of a model of T into infinitely many infinite convex classes, with each E1-class
partitioned into infinitely many E2-subclasses, which are also densely ordered in the E1-class
and without leftmost and rightmost subclasses; etc. Thus, for every natural n ≥ 1 there
exists an 1-transitive weakly o-minimal theory of convexity rank n, whence we obtain that
RS(T ) ≥ 1.

3 Expansion of theories by unary functions

Let us recall some notions originally introduced in [1]. Let Y ⊂Mn+1 be ∅-definable, let
π : Mn+1 →Mn be a projection that drops the last coordinate, and let Z := π(Y ). For each
ā ∈ Z, let Yā := {y : (ā, y) ∈ Y }. Suppose that for for every ā ∈ Z, the set Yā is bounded
from above but has no supremum in M. Let ∼ be an ∅-definable equivalence relation on Mn,
defined as follows:

ā ∼ b̄ for all ā, b̄ ∈Mn \ .Z, and ā ∼ b̄⇔ supYā = supYb̄, if ā, b̄ ∈ Z.

Let Z := Z/ ∼, and for each tuple ā ∈ Z, we denote by [ā] ∼ the class of tuple ā. There
is a natural ∅–definable linear ordering on M ∪ Z, defined as follows.

Let ā ∈ Z and c ∈M . Then [ā] < c if and only if w < c for all w ∈ Yā. If ā 6∼ b̄, then there
exists some x ∈ M such that [ā] < x < [b̄] or [b̄] < x < [ā], and therefore < induces a linear
order on M ∪ Z. We call such a set Z a sort (in this case, an ∅–definable sort) in M , where
M is the Dedekind completion of the structure M , and we view Z as naturally embedded in
M . Similarly, we can obtain a sort in M by considering infima instead of suprema.

Thus, we will consider definable functions from M in its Dedekind completion M , more
precisely into definable sorts of the structure M , representing infima or suprema of definable
sets.

Let A,D ⊆ M , D be infinite, Z ⊆ M be an A–definable sort and f : D → Z be an
A-definable function. We say that f is locally increasing (locally decreasing, locally constant)
on D if for any a ∈ D there exists an infinite interval J ⊆ D containing {a} such that f is
strictly increasing (strictly decreasing, constant) on J ; we also say that f is locally monotonic
on D if it is locally increasing or locally decreasing on D.

Let f be an A-definable function on D ⊆M , E be an A-definable equivalence relation on
D. We say that f is strictly increasing (decreasing) on D/E if for any a, b ∈ D with conditions
a < b and ¬E(a, b) we have f(a) < f(b) (f(a) > f(b)).
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Proposition 8. [7,8] Let T be a weakly o-minimal theory,M |= T , A ⊆M , p ∈ S1(A) be non-
algebraic. Suppose that there exists an A-definable function f the domain of which contains
the set p(M), and f is not a constant on p(M). Then f is locally monotonic or locally constant
on p(M) and there exists an A-definable equivalence relation E(x, y) partitioning p(M) into
infinitely many convex classes such that f is strictly monotonic on p(M)/E.

Definition 4. [9, 10] Let M be a weakly o-minimal structure, B,D ⊆ M , A ⊆ M be a B-
definable sort and f : D → A be a B-definable function that is locally increasing (decreasing)
on D. We will say that a function f has depth n on the set D if there are equivalence relations
E1(x, y), . . . , En(x, y), partitioning D into infinitely many infinite convex classes, so that for
any 2 ≤ i ≤ n every Ei-class is partitioned into infinitely many infinite convex Ei−1-subclasses
and the following holds:

• f is strictly increasing (decreasing) on each E1-class,

• f is locally decreasing (increasing) on D/Ek for any odd k ≤ n (or the same, f is strictly
decreasing (increasing) on every Ek+1(a,M)/Ek for any a ∈ D),

• f is locally increasing (decreasing) on D/Ek for for any even k ≤ n,

• f is strictly monotonic on D/En.

In this case, the function f is called locally increasing (decreasing) of depth n.

Obviously, a strictly increasing (decreasing) function is locally increasing (decreasing) of
depth 0.

Theorem 1. [10] Let T be a weakly o-minimal theory. Then any definable function into a
definable sort has finite depth.

In [11], Definition 4 was extended by introducing the notion of a locally constant function
of depth n, i.e., in Definition 4 the function f is a constant on every E1-class. Note that in
this case the function f can be either locally increasing, or locally decreasing on D/E1. In the
following examples,M is a weakly o-minimal structure, and the function f is locally constant.

Example 4. (Example 2.6.1, [1]) Let M := 〈M,<,P 1
1 , P

1
2 , f

1〉 be a linearly ordered struc-
ture so that M is a disjoint union of interpretations of the unary predicates P1 and P2, with
P1(M) < P2(M). We identify the interpretation P2 with Q ordered as usual, and P1 with
Q × Q, ordered lexicographically. The symbol f is interpreted by a partial unary function
with Dom f = P1(M) and Range f = P2(M) and is defined by f((n,m)) = n for for all
(n,m) ∈ Q×Q.

Let p := {P1(x)}, q := {P2(x)}. Obviously, p, q ∈ S1(∅). Let us take an arbitrary
a ∈ p(M). Then there exists a unique b ∈ q(M) such that f(a) = b, i.e., b ∈ dcl({a}).
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Consider the following formula:

E(x, y) := P1(x) ∧ P2(y) ∧ ∧∃x[P2(z) ∧ f(x) = z ∧ f(y) = z].

We can see that E(x, y) is an ∅-definable equivalence relation partitioning p(M) into
infinitely many infinite convex classes. We assert that f is locally constant of depth 1 on
P1(M), i.e., f is constant on every E-class and f is strictly increasing on P1(M)/E.

Example 5. Let M := 〈M,<,P 1
1 , P

1
2 , E

p
1 , E

p
2 , E

q
1 , f

1〉 be a linearly ordered structure so that
M is a disjoint union of interpretations of the unary predicates P1 and P2 with P1(M) <
P2(M). We identify the interpretation of P1 with Q × Q × Q, ordered lexicographically,
and P2 with Q × Q, also ordered lexicographically. Interpretations of the binary predicates
Ep1(x, y) and Ep2(x, y) are equivalence relations on P1(M) such that for all x = (n1,m1, l1),
y = (n2,m2, l2) ∈ Q×Q×Q we have

Ep1(x, y)⇔ n1 = n2 ∧m1 = m2

and
Ep2(x, y)⇔ n1 = n2.

The interpretation of the binary predicate Eq1(x, y) is similarly defined: it is an equivalence
relation on P2(M) such that for all x = (n1,m1), y = (n2,m2) ∈ Q×Q we have

Eq1(x, y)⇔ n1 = n2.

The symbol f is interpreted by a partial unary function such that Dom f = P1(M) and
Range f = P2(M), and is defined by f((n,m, l)) = (−n,m) for all (n,m, l) ∈ Q×Q×Q×Q.

We assert that the function f is locally constant of depth 2 on P1(M), i.e., f is constant
on every Ep1 -class, f is strictly increasing on every Ep2(a,M)/Ep1 , where a ∈ p(M), and f is
strictly decreasing on P1(M)/Ep2 .

Proposition 9. Let T be an 1-transitive o-minimal linear ordering, M |= T . Then an o-
minimal expansion of the theory T by a unary function f preserves the 1-transitivity if and
only if f is strictly increasing on M .

Proof of Proposition 9. By virtue of o-minimality, f is piecewise monotonic on its domain.
If f is not strictly monotonic over the whole M , then such an expansion loses 1-transitivity.

Suppose the contrary: f is strictly decreasing on M , i.e., for any a, b ∈M such that a < b
we have f(b) < f(a). Consider the following formulas:

φ1(x) := x < f(x), φ2(x) := x = f(x), φ3(x) := f(x) < x.

Obviously, by virtue of 1-transitivity, either φ1(M) = M , or φ2(M) = M , or φ3(M) = M .
If φ2(M) = M , then f is strictly increasing. If φ1(M) = M , then for any a ∈ M we have
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a < f(a). Since f is strictly decreasing, then f2(a) < f(a), whence f(a) 6∈ φ1(M) which
contradicts our assumption. If φ3(M) = M then for any a ∈ M we have f(a) < a. Since f
is strictly decreasing, then f(a) < f2(a), whence f(a) 6∈ φ3(M), which again contradicts our
assumption.

Proposition 10. Let T be an 1-transitive weakly o-minimal linear ordering, M |= T . Then a
weakly o-minimal expansion of the theory T by a unary function f preserves the 1-transitivity
if and only if f is locally monotonic or locally constant on M and there exists an ∅-definable
equivalence relation E(x, y) partitioning M into infinitely many convex classes such that f is
strictly increasing on M/E.

Proof of Proposition 10. By virtue of weak o-minimality, f is piecewise locally monotonic
on its domain. If f is not locally monotonic or locally constant on the the whole M , then
such an expansion loses 1-transitivity. By virtue of Proposition 8 there exists an ∅-definable
equivalence relation E(x, y) that partitions M into infinitely many convex classes such that
f is strictly monotonic on M/E.

Suppose the contrary: f is strictly decreasing on M/E, i.e., for any a, b ∈ M such that
a < b and ¬E(a, b) we have f(b) < f(a). Consider the following formulas:

φ1(x) := x < f(x), φ2(x) := x = f(x), φ3(x) := f(x) < x.

Obviously, by virtue of 1-transitivity, either φ1(M) = M , or φ2(M) = M , or φ3(M) = M .
If φ2(M) = M , then f is strictly increasing on M .

Suppose that φ1(M) = M . Take arbitrary a, b ∈ M such that a < b and ¬E(a, b).
Then f(b) < f(a). Since b ∈ φ1(M), then a < b < f(b) < f(a), whence we obtain a <
f(a)∧¬E(a, f(a). Then by by virtue of strict decreasing of f on M/E we have f2(a) < f(a),
whence f(a) 6∈ φ1(M), which contradicts our assumption.

Now let φ3(M) = M . Let’s take arbitrary a, b ∈ M such that a < b and ¬E(a, b).
Then f(b) < f(a). Since b ∈ φ3(M), then f(b) < f(a) < a < b, whence we obtain f(b) <
b ∧ ¬E(f(b), b). Then by by virtue of strict decreasing of f on M/E we have f(b) < f2(b),
whence f(b) 6∈ φ3(M), which again contradicts our assumption.

Corollary 4. Let T be an 1-transitive weakly o-minimal linear ordering, M |= T . Then a
weakly o-minimal expansion of the theory of T by a unary function f preserves 1-transitivity if
and only if either f is locally increasing of depth n on M for some even n ∈ ω, or f is locally
decreasing of depth n on M for some odd n ∈ ω; or f is locally constant on M and there
exists an ∅-definable equivalence relation E(x, y) partitioning M into infinitely many convex
classes such that f is strictly increasing on M/E.

Corollary 5. Let T be the family of all expansions of 1-transitive of weakly o-minimal order-
ings by a unary function preserving 1-transitivity and weak o-minimality. Then RS(T ) ≥ 1.

Proof of Corollary 5. In a weakly o-minimal theory, a unary function can have depth n
for every n ∈ ω.
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4 Expansion of theories by arbitrary binary relations

If we expand an arbitrary weakly o-minimal theory by a new binary relation R(x, y) and
this expansion preserves weak o-minimality, then for any a ∈M each of the sets R(a,M) and
R(M,a) distinguishes a finite number of convex sets in M . Since any of these convex sets is
{a}-definable, we can assume, that each of the sets R(a,M) and R(M,a) is convex for any
a ∈M .

Theorem 2. Let T be an 1-transitive weakly o-minimal linear ordering, M |= T . Suppose
that R(x, y) is a new binary relation such that each of the sets R(a,M) and R(M,a) is
convex and infinite for any a ∈ M . Then a weakly o-minimal expansion of the theory T
by the binary relation R(x, y) preserves 1-transitivity if and only if g(x) := inf R(x,M),
f(x) := supR(x,M), g′(y) := inf R(M,y) and f ′(y) := supR(M,y) are locally monotonic or
locally constant on M and there exists an ∅-definable equivalence relation E(x, y) partitioning
M into infinitely many convex classes such that that all functions g, f , g′ and f ′ are strictly
increasing on M/E.

Proof of Theorem 2. Let us first show that the statement of the theorem is true for
functions g and f . By weak o-minimality, each of the functions g and f is piecewise locally
monotonic on its domain. If at least one of these functions is not locally monotonic or
locally constant over the whole M , then such an expansion loses 1-transitivity. By virtue of
Proposition 8 there exist ∅-definable equivalence relations E1(x, y) and E2(x, y), partitioning
M into infinitely many convex classes such that g and f are strictly monotonic on M/E1 and
M/E2 respectively. Clearly, either E1(a,M) ⊆ E2(a,M), or E2(a,M) ⊆ E1(a,M) for any
a ∈ M . Without loss of generality, let us assume the former. Then g is strictly monotonic
on M/E2. Further, since R(a,M) is convex and infinite for any a ∈M , then g(a) < f(a) for
any a ∈M .

Consider the following formulas:

φ1(x) := ∃y[x < y ∧R(x, y) ∧ ∀t(x ≤ t ≤ y → R(x, t))] ∧ ∀z[z < x→ ¬R(x, z)],

φ2(x) := ∃y[x < y ∧R(x, y) ∧ ∃y1(x < y1 < y ∧ ¬R(x, y1)],

φ3(x) := ∃y1∃y2[y1 < x < y2 ∧R(x, y1) ∧R(x, y2)],

φ4(x) := R(x, x) ∧ ∃y1[y1 < x ∧R(x, y1) ∧ ∀y(R(x, y)→ y ≤ x)],

φ5(x) := ∃y[y < x ∧R(x, y) ∧ ∀t[R(x, t)→ t < x] ∧ ¬R(x, x).

Suppose that φ1(M) = M , i.e., a = g(a) for any a ∈ M . Then it is obvious that g is
strictly increasing on M . Suppose the contrary: f is strictly decreasing on M/E2. Take
arbitrary a, b ∈M such that a < b ∧ ¬E2(a, b). Then we obtain that f(b) < f(a), whence

a < b = g(b) < f(b) < f(b) < f(a).
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Take an arbitrary c ∈M such that f(a) < c. Then we have: ¬E2(a, c). Since f is strictly
decreasing on M/E2, then f(c) < f(a), where c 6∈ φ1(M), which contradicts our assumption.

Let now φ2(M) = M , i.e. a < g(a) for any a ∈ M . Suppose the contrary: g is strictly
decreasing on M/E2 or f is strictly decreasing on M/E2. Without loss of generality, let us
assume the former. Take arbitrary a, b ∈M such that a < b∧¬E2(a, b). Then we obtain that
g(b) < g(a), whence

a < b < g(b) < g(a).

Take an arbitrary c ∈M such that g(a) < c. Then we have: ¬E2(a, c). Since g is strictly
decreasing on M/E2, then g(c) < g(a), whence c 6∈ φ2(M), which again contradicts our
assumption. The case where f is strictly decreasing on M/E2 is considered similarly.

Let now φ3(M) = M , i.e. g(a) < a < f(a) for any a ∈ M . Suppose the contrary: g is
strictly decreasing on M/E2 or f is strictly decreasing on M/E2. Without loss of generality,
let us assume the former. Take arbitrary a, b ∈ M such that a < b ∧ ¬E2(a, b). Then we
obtain that g(b) < g(a), whence

g(b) < g(a) < a < b.

Let us take an arbitrary c ∈ M such that c < g(b). Then we have: ¬E2(c, b). Since g is
strictly decreasing on M/E2, then g(b) < g(c), whence c 6∈ φ3(M), which again contradicts
our assumption. The case where f is strictly decreasing on M/E2 is considered similarly.

The cases when φ4(M) = M or φ5(M) = M are considered similarly.
Note that similar reasoning is true for functions g′ and f ′. Here we establish that g′

and f ′ are strictly increasing on M/E′2, where E′2(x, y) is an ∅-definable equivalence relation
partitioning M into infinitely many convex classes. Obviously, either E2(a,M) ⊆ E′2(a,M),
or E′2(a,M) ⊆ E2(a,M) for any a ∈M . Thus, the theorem is completely proved.
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Кулпешов Б.Ш. 1-ТРАНЗИТИВТIК РЕТТЕЛГЕН ТЕОРИЯЛАРДЫН ТРИВИАЛ-
ДЫ ЕМЕС БАЙЫТУЛЫР.

Бул жумыста бiз 1-транзитивтi реттелген теориялардын 1-транзитивтiлiктi сактай-
тын тривиалды емес байытуларды зерттеймiз. Сондай-ак, алсiз o-минималды сызыктык
реттердi эквиваленттер катынастар, унарлы функциялар жане ерiктi бинарлык катына-
стар бойынша байытулар зерттелдi. Алынган натижелерге суйене отырып, артурлi алсiз
o-минималды теориялардын отбасылары ушiн рангiсi мандер табылды.

Туйiндi создер. Алсiз о-минималдык, 1-транзитивтiк, донестiк рангiсi, теорияны
байыту, реттелген теория, теориялар отбасына арналган рангiсi.

Кулпешов Б.Ш. НЕТРИВИАЛЬНЫЕ ОБОГАЩЕНИЯ 1-ТРАНЗИТИВНЫХ УПО-
РЯДОЧЕННЫХ ТЕОРИЙ

В настоящей работе мы исследуем нетривиальные обогащения 1-транзитивных упоря-
доченных теорий, сохраняющие 1-транзитивность. В частности, были исследованы обо-
гащения слабо о-минимальных линейных порядков отношениями эквивалентности, унар-
ными функциями и произвольными бинарными отношениями. На основе полученных ре-
зультатов установлены значения рангов для различных семейств слабо о-минимальных
теорий.

Ключевые слова: слабая о-минимальность, 1-транзитивность, ранг выпуклости,
обогащение теории, упорядоченная теория, ранг для семейства теорий.
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