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1 Preliminaries

Let L be a first-order countable language. Throughout this paper we consider L-structures
and assume that L contains a binary relation symbol <, which is interpreted as the linear
ordering in these structures.

We will say that a linearly ordered structure M := (M, <, ...) is 1-is transitive if tp(a/0) =
tp(b/0) for any a,b € M.

Example 1. Let M := (w,<), where w is the ordering on the set of natural numbers.
Clearly, M is not l-transitive, since for any a,b € M with condition a # b we have that

tp(a/0) # tp(b/0).

Example 2. Let M := (Z, <), where Z is the set of integers. Then it’s obvious that M is
1-transitive.
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Non-trivial expansions of 1-transitive ordered theories 45

Fact 1. Let M be a 1-transitive linearly ordered structure. Then
(1) M has neither the smallest nor the largest elements.
(2) Any O-definable subset of the structure M coincides with the universe of the structure.

An open interval I in a structure M is a parametrically definable subset of the structure
M of the form
I={ceM:MEFa<c<b}

for some a,b € M U{—o00,00} where a < b. Similarly, we can we can define closed, semi-open-
semi-closed, etc. intervals in M so that, for example, an arbitrary point of the structure M
is itself a (trivial) closed interval.

A subset A of a linearly ordered structure M is called convex if for any a,b € A and
¢ € M whenever a < ¢ < b we have ¢ € A. A weakly o-minimal structure ( [1]) is a linearly
ordered structure M = (M, =, <, ...) such that any definable (with parameters) subset of the
structure M is a union of finitely many convex sets in M. Recall that such a structure M is
called o-minimal if every definable (with parameters) subset of the structure M is a union of
of finitely many intervals and points in M. Real closed fields with a proper convex valuation
ring provide an important example of weakly o-minimal (not o-minimal) structures.

Proposition 1. Let M be an 1-transitive o-minimal structure. Then either (M, <) is a dense
linear ordering without endpoints, or (M, <) is a discrete linear ordering without endpoints.

Proof of Proposition 1. Suppose the contrary: (M, <) is neither a dense linear ordering
without endpoints nor a discrete linear ordering without endpoints. If (M, <) has any end-
point, it will contradict Fact 1. Therefore, assume that (M, <) has no endpoints. Consider
the following formula:

O(x) == Vi Viyalyr < x < yo — FtIa(yr < t1 <z <tz < y2)l.
By virtue of the assumption 6(M) # M and 6(M) # (). Whence, by virtue of Fact 1 we

again come to a contradiction.

Corollary 1. Let M be an I-transitive (weakly) o-minimal linear ordering. Then M is
elementarily equivalent to (Q, <) or M is elementarily equivalent to (w* + w, <).

Let 7 be a family of complete theories of a fixed signature X, and let ¢ be an arbitrary
Y-proposition. Then the set
To={TeT|Tk ¢}

is called a ¢-neighborhood of the family T.

Definition 1. [2] Let 7 be a family of complete theories of a fixed signature ¥. We define
the rank RS for the family of theories as follows:
(1) RS(T) =—-1if T =0.
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(2) RS(T) =0 if T is a finite nonempty family.
(3) RS(T) > 1if T is infinite.
(4) RS(T) > a+1 if there exist pairwise incompatible ¥-propositions ¢, n € w, such that
RS(T,,) > .
(5) If 0 is a limit ordinal then RS(7") > ¢ if RS(T) > f8 for any 3 < 0.
We assume RS(7) = a if RS(T) > o and —[RS(T) > a+ 1].
If RS(T) > « for any «, then we put RS(7) = oo.
A family T is called e-totally transcendental or total transcendental if RS(T) is an ordinal.
If a family 7 is e-totally transcendental with RS(7) = « > 0, then as the degree ds(T)
of the family 7 is considered the maximal number of pairwise incompatible sentences ¢; for
which RS(7,,) = «

Corollary 2. Let T be a family of all 1-transitive (weakly) o-minimal linear orders. Then

RS(T) = 0, ds(T) = 2.

Proposition 2. Let T be a linearly ordered theory. If T is 1-transitive, then there is no
expansion of the theory T by any constant symbols preserving I1-transitivity.

Proposition 3. Let T be an I-transitive weakly o-minimal theory. Then an expansion of
the theory T by an arbitrary unary predicate preserves both the I-transitivity and weak o-
minimality if and only if such a predicate is universal, i.e., it distinguishes the universe of a
model of the theory T .

Proof of Proposition 3. (=) Due to weak o-minimality, any unary predicate must deter-
mine only finitely many convex sets. If any of the distinguished non-empty convex sets does
not coincide with the universe of a model of the theory T', then we get a contradiction with
1-transitivity.

(<) If a unary predicate is universal, i.e., in particular, determines a convex set then by
virtue of Theorem 63 [5] such an expansion preserves the weak o-minimality. And since such
a convex set coincides with the universe of a model of the theory T, such an expansion is
1-transitive.

Corollary 3. Let T be an 1-transitive o-minimal theory. Then there is no non-trivial expan-
sion of the theory T by any unary predicate symbols preserving I1-transitivity.

Definition 2. [3,4] Let T be a countable complete theory, p1(z1),...,pn(x,) € S1(0). We
will say that a type ¢(x1, ..., z,) € Sp(0) is a (p1, ..., pn)-type if

n
=1

The set of all (p1,...,pn)-types of theory T' we denote by Sy, . . (T).
A theory T is called almost w-categorical or almost omega-categorical, if for any pi(z1),
<oy Pn(xy) € S1(0) there exists only a finite number of types ¢(x1,. .., Z5) € Sp,... p.(T).

KAZAKH MATHEMATICAL JOURNAL, 22:1 (2022) 44-55



Non-trivial expansions of 1-transitive ordered theories 47

Proposition 4. Let M be an 1-transitive weakly o-minimal structure. Suppose that Th(M)
18 almost omega-categorical. Then M is densely ordered.

Proof of Proposition 4. According to Corollary 1, the reduct of a structure M on a
linear order {<} is elementarily equivalent either to (Q, <) or (w* + w, <). Suppose that
M = (w* + w, <). Then consider the following formulas:

IS(z) — “z has an immediate successor”,
IP(z) — “z has an immediate predecessor”,
Si(x,y) — “y is an immediate successor of element x”,
Sn(x,y) — “y is nth immediate successor of element z”, n > 1.

By virtue of the assumption made, the following set of formulas is locally consistent:
{15(x) ANIP(x)} U{JySn(z,y) [ n =1}

Hence, there exists p € S1()) extending this set of formulas, and an elementary extension
M’ of the structure M in which type p is realized. Then for each n < w the set

p(z) Up(y) U {Sh(z,y)}

is consistent, whence the number of (p1, p2)-types is infinite, where p;(x;) := p(x;),7 € {1,2}.
We obtain a contradiction with the almost w-categoricity of Th(M).

Note that an 1-transitive weakly o-minimal densely ordered structure does not necessarily
have an almost omega-categorical theory.

Example 3. Let M = (Q, <, R?) be a linearly ordered structure, where Q is the set of
rational numbers. The relation R(x,y) is defined as follows:

R(a,b) & a<b<a+V2
for any a,b € Q.

It can be established that M is an 1-transitive weakly o-minimal structure which is densely
ordered, and Th(M) is not almost omega-categorical.

2 Expansion of theories by equivalence relations

The definition of the rank of convexity of a formula with one free variable was introduced
in [6] and extended to an arbitrary set in [7]:
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Definition 3. [6,7] Let T be a weakly o-minimal theory, M =T, A C M. The convezity
rank of the set A (RC(A)) is defined as follows:

1) RC(A)=—-1if A=0.

2) RC(A) =0 if A is finite and non-empty.

3) RC(A) > 1 if A is infinite.

4) RC(A) > a + 1 if there exist a parametrically definable equivalence relation E(z,y)
and b; € A,i € w, satisfying the following conditions:

e For any i,j € w, whenever i # j we have M = —E(b;, b;)
e For eachi € w RC(E(M,b;)) > o and E(M,b;) is a convex subset of A

5) RC(A) > ¢ if RC(A) > o for all & < ¢ (¢ is limit).
For an ordinal a, let RC(A) =« if RC(A) > o and RC(A) #? o + 1.
If RC(A) = « for some «, then we say that RC(A) is defined. Otherwise (i.e., if RC(A)
> « for all ordinals «), we put RC(A) = oc.
The convezity rank of a formula ¢(x,a), where a € M, is defined as the convexity rank of
the set ¢(M,a), i.e
RO(¢(x,a)) := RC(p(M, a)).

The rank of the convexity of an I-type p is defined as the rank of convexity of the set
p(M), ie., RC(p) := RC(p(M)).

Proposition 5. Let T be an 1-transitive o-minimal theory. Then there is no non-trivial
expansion of the theory T by any equivalence relation partitioning the universe of a model of
T into infinite convex classes, preserving 1-transitivity and o-minimality.

Proof of Proposition 5. By virtue of o-minimality, any equivalence relation E with infinite
convex classes partitions the underlying set of a model of T" into only finitely many F-classes,
from which every E-class is ()-definable. Since by virtue of o-minimality every non-trivial
convex infinite set that is definable must have endpoints, then £ must be a universal relation,
i.e., for any a,b € M, E(a,b) must hold.

Proposition 6. Let T be an 1-transitive weakly o-minimal linear ordering. Then expanding
the theory of T by an equivalence relation E(x,y) which partitions the universe of a structure
into infinite convex classes, preserves the 1-transitivity and weak o-minimality if and only if
the induced order on M /E is an 1-transitive linear ordering.

Proposition 7. Let T be the family of all 1-transitive weakly o-minimal densely ordered
theories. Then RS(T) > 1

Proof of Proposition 7. Note that the 1-transitive weakly o-minimal theories differ by the
rank of convexity: if RC(x = x) = 1, then there is no definable (possibly with parameters)
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equivalence relation partitioning the underlying set of a model of 7" into infinitely many infinite
convex classes; if RC(x = x) = 2, then such an equivalence relation exists, it partitions
M = T into infinitely many infinite convex classes, and these classes are densely ordered and
without the leftmost and rightmost classes, and there is no other such an equivalence relation;
if RC(x = x) = 3, then there exist equivalence relations E(z,y) and Ea(z,y), partitioning
the universe of a model of T into infinitely many infinite convex classes, with each FE1-class
partitioned into infinitely many Fs-subclasses, which are also densely ordered in the Fj-class
and without leftmost and rightmost subclasses; etc. Thus, for every natural n > 1 there
exists an 1-transitive weakly o-minimal theory of convexity rank n, whence we obtain that

RS(T) > 1.

3 Expansion of theories by unary functions

Let us recall some notions originally introduced in [1]. Let Y € M"™*! be (-definable, let
7 : M™! — M™ be a projection that drops the last coordinate, and let Z := 7(Y'). For each
a€ Z, let Y; :={y: (a,y) € Y}. Suppose that for for every a € Z, the set Y; is bounded
from above but has no supremum in M. Let ~ be an (-definable equivalence relation on M™",
defined as follows:

a~bforalla,be M"\.Z, and a~b<« supY =supV;, if a,b € Z.

Let Z := Z/ ~, and for each tuple @ € Z, we denote by [a] ~ the class of tuple @. There
is a natural (—definable linear ordering on M U Z, defined as follows.

Let @ € Z and ¢ € M. Then [a] < cif and only if w < ¢ for all w € Y;. If @ £ b, then there
exists some x € M such that [a] < 2 < [b] or [b] < = < [a], and therefore < induces a linear
order on M U Z. We call such a set Z a sort (in this case, an ()-definable sort) in M, where
M is the Dedekind completion of the structure M, and we view Z as naturally embedded in
M. Similarly, we can obtain a sort in M by considering infima instead of suprema.

Thus, we will consider definable functions from M in its Dedekind completion M, more
precisely into definable sorts of the structure M, representing infima or suprema of definable
sets.

Let A,D C M, D be infinite, Z C M be an A-definable sort and f : D — Z be an
A-definable function. We say that f is locally increasing (locally decreasing, locally constant)
on D if for any a € D there exists an infinite interval J C D containing {a} such that f is
strictly increasing (strictly decreasing, constant) on J; we also say that f is locally monotonic
on D if it is locally increasing or locally decreasing on D.

Let f be an A-definable function on D C M, E be an A-definable equivalence relation on
D. We say that f is strictly increasing (decreasing) on D/ E if for any a,b € D with conditions
a < band —E(a,b) we have f(a) < f(b) (f(a) > f(b)).
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Proposition 8. [7,8] Let T be a weakly o-minimal theory, M =T, A C M, p € S1(A) be non-
algebraic. Suppose that there exists an A-definable function f the domain of which contains
the set p(M), and f is not a constant on p(M). Then f is locally monotonic or locally constant
on p(M) and there exists an A-definable equivalence relation E(x,y) partitioning p(M) into
infinitely many convex classes such that f is strictly monotonic on p(M)/E.

Definition 4. [9,10| Let M be a weakly o-minimal structure, B,D C M, A C M be a B-
definable sort and f : D — A be a B-definable function that is locally increasing (decreasing)
on D. We will say that a function f has depth n on the set D if there are equivalence relations
Ei(z,y),..., En(z,y), partitioning D into infinitely many infinite convex classes, so that for
any 2 < i < n every F;-class is partitioned into infinitely many infinite convex FE;_j-subclasses
and the following holds:

e f is strictly increasing (decreasing) on each Fj-class,

e fislocally decreasing (increasing) on D/Ej, for any odd k < n (or the same, f is strictly
decreasing (increasing) on every Fyy1(a, M)/E} for any a € D),

e f is locally increasing (decreasing) on D/Ej for for any even k < n,

e f is strictly monotonic on D/E,.

In this case, the function f is called locally increasing (decreasing) of depth n.

Obviously, a strictly increasing (decreasing) function is locally increasing (decreasing) of
depth 0.

Theorem 1. [10] Let T' be a weakly o-minimal theory. Then any definable function into a
definable sort has finite depth.

In [11], Definition 4 was extended by introducing the notion of a locally constant function
of depth n, i.e., in Definition 4 the function f is a constant on every Ei-class. Note that in
this case the function f can be either locally increasing, or locally decreasing on D/E;. In the
following examples, M is a weakly o-minimal structure, and the function f is locally constant.

Example 4. (Example 2.6.1, [1]) Let M := (M, <, PL, P}, f!) be a linearly ordered struc-
ture so that M is a disjoint union of interpretations of the unary predicates P; and P, with
P (M) < Py(M). We identify the interpretation P, with Q ordered as usual, and P; with
Q x @Q, ordered lexicographically. The symbol f is interpreted by a partial unary function
with Dom f = P;(M) and Range f = P>(M) and is defined by f((n,m)) = n for for all
(n,m) € Q x Q.

Let p := {Pi(2)}, ¢ := {P2(x)}. Obviously, p,qg € S1(0). Let us take an arbitrary
a € p(M). Then there exists a unique b € ¢(M) such that f(a) =b, i.e., b € dcl({a}).
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Consider the following formula:
E(z,y) :== Pi(z) AN Po(y) ANN\Tz[Pa(z2) A f(x) =2 A f(y) = 2]

We can see that E(x,y) is an (-definable equivalence relation partitioning p(M) into
infinitely many infinite convex classes. We assert that f is locally constant of depth 1 on
Py(M), i.e., f is constant on every E-class and f is strictly increasing on P;(M)/E.

Example 5. Let M := (M, <, Pl, Ps, E7, E5 E{, f1) be a linearly ordered structure so that
M is a disjoint union of interpretations of the unary predicates P; and P» with Py(M) <
Py(M). We identify the interpretation of P; with Q x Q x @, ordered lexicographically,
and P, with Q x Q, also ordered lexicographically. Interpretations of the binary predicates
EP(z,y) and EL(z,y) are equivalence relations on Pj(M) such that for all z = (ny,mq,1l1),
y = (ng,ma,l2) € Q x Q x Q we have

EV(z,y) © ni =na Amyp =ma

and
E¥(z,y) & n1 = no.

The interpretation of the binary predicate E{(z,y) is similarly defined: it is an equivalence
relation on Py(M) such that for all z = (ny,m1),y = (n2, m2) € Q x Q we have

El(z,y) < ni = no.

The symbol f is interpreted by a partial unary function such that Dom f = P;(M) and
Range f = Py(M), and is defined by f((n,m,l)) = (—n,m) for all (n,m,l) € Q x Q x Q x Q.

We assert that the function f is locally constant of depth 2 on P (M), i.e., f is constant
on every E¥-class, f is strictly increasing on every EX(a, M)/EY, where a € p(M), and f is
strictly decreasing on Py(M)/ES.

Proposition 9. Let T be an 1-transitive o-minimal linear ordering, M = T. Then an o-
minimal expansion of the theory T by a unary function f preserves the 1-transitivity if and
only if f is strictly increasing on M.

Proof of Proposition 9. By virtue of o-minimality, f is piecewise monotonic on its domain.
If f is not strictly monotonic over the whole M, then such an expansion loses 1-transitivity.

Suppose the contrary: f is strictly decreasing on M, i.e., for any a,b € M such that a < b
we have f(b) < f(a). Consider the following formulas:

o1(z) =z < f(x), ¢2(x) :=2= f(x), ¢3(z):=f(x) <z

Obviously, by virtue of 1-transitivity, either ¢4 (M) = M, or ¢2(M) = M, or ¢3(M) = M.
If ¢po(M) = M, then f is strictly increasing. If ¢1(M) = M, then for any a € M we have
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a < f(a). Since f is strictly decreasing, then f2?(a) < f(a), whence f(a) & ¢1(M) which
contradicts our assumption. If ¢3(M) = M then for any a € M we have f(a) < a. Since f
is strictly decreasing, then f(a) < f%(a), whence f(a) & ¢3(M), which again contradicts our
assumption.

Proposition 10. Let T be an 1-transitive weakly o-minimal linear ordering, M |=T. Then a
weakly o-minimal expansion of the theory T by a unary function f preserves the 1-transitivity
if and only if f is locally monotonic or locally constant on M and there exists an ()-definable
equivalence relation E(x,y) partitioning M into infinitely many convex classes such that f is
strictly increasing on M/E.

Proof of Proposition 10. By virtue of weak o-minimality, f is piecewise locally monotonic
on its domain. If f is not locally monotonic or locally constant on the the whole M, then
such an expansion loses 1-transitivity. By virtue of Proposition 8 there exists an ()-definable
equivalence relation F(z,y) that partitions M into infinitely many convex classes such that
f is strictly monotonic on M/E.

Suppose the contrary: f is strictly decreasing on M/E, i.e., for any a,b € M such that
a < b and —E(a,b) we have f(b) < f(a). Consider the following formulas:

o1(z) =z < f(z), ¢2(x) =2 = f(x), ¢s3(z):=f(x)<uz.

Obviously, by virtue of 1-transitivity, either ¢1(M) = M, or ¢po(M) = M, or ¢3(M) = M.
If po(M) = M, then f is strictly increasing on M.

Suppose that ¢1(M) = M. Take arbitrary a,b € M such that a < b and —E(a,b).
Then f(b) < f(a). Since b € ¢1(M), then a < b < f(b) < f(a), whence we obtain a <
f(a) N=E(a, f(a). Then by by virtue of strict decreasing of f on M/E we have f2(a) < f(a),
whence f(a) & ¢1(M), which contradicts our assumption.

Now let ¢3(M) = M. Let’s take arbitrary a,b € M such that a < b and —E(a,b).
Then f(b) < f(a). Since b € ¢3(M), then f(b) < f(a) < a < b, whence we obtain f(b) <
bA—=E(f(b),b). Then by by virtue of strict decreasing of f on M/E we have f(b) < f2(b),
whence f(b) € ¢3(M), which again contradicts our assumption.

Corollary 4. Let T be an 1-transitive weakly o-minimal linear ordering, M = T. Then a
weakly o-minimal expansion of the theory of T' by a unary function f preserves I-transitivity if
and only if either f is locally increasing of depth n on M for some even n € w, or f is locally
decreasing of depth n on M for some odd n € w; or f is locally constant on M and there
exists an (-definable equivalence relation E(x,y) partitioning M into infinitely many convex
classes such that f is strictly increasing on M/E.

Corollary 5. Let T be the family of all expansions of 1-transitive of weakly o-minimal order-
ings by a unary function preserving 1-transitivity and weak o-minimality. Then RS(T) > 1.

Proof of Corollary 5. In a weakly o-minimal theory, a unary function can have depth n
for every n € w.
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4 Expansion of theories by arbitrary binary relations

If we expand an arbitrary weakly o-minimal theory by a new binary relation R(z,y) and
this expansion preserves weak o-minimality, then for any a € M each of the sets R(a, M) and
R(M,a) distinguishes a finite number of convex sets in M. Since any of these convex sets is
{a}-definable, we can assume, that each of the sets R(a, M) and R(M,a) is convex for any
a€ M.

Theorem 2. Let T be an 1-transitive weakly o-minimal linear ordering, M = T. Suppose
that R(x,y) is a new binary relation such that each of the sets R(a,M) and R(M,a) is
convezr and infinite for any a € M. Then a weakly o-minimal expansion of the theory T
by the binary relation R(x,y) preserves I-transitivity if and only if g(z) := inf R(xz, M),
f(z) :=sup R(xz, M), ¢'(y) := inf R(M,y) and f'(y) := sup R(M,y) are locally monotonic or
locally constant on M and there exists an O-definable equivalence relation E(xz,y) partitioning
M into infinitely many convex classes such that that all functions g, f, g’ and f' are strictly
increasing on M/E.

Proof of Theorem 2. Let us first show that the statement of the theorem is true for
functions g and f. By weak o-minimality, each of the functions g and f is piecewise locally
monotonic on its domain. If at least one of these functions is not locally monotonic or
locally constant over the whole M, then such an expansion loses 1-transitivity. By virtue of
Proposition 8 there exist (-definable equivalence relations F1(z,y) and Fs(x,y), partitioning
M into infinitely many convex classes such that g and f are strictly monotonic on M/E; and
M/ E; respectively. Clearly, either Ey(a, M) C Es(a, M), or Ey(a, M) C Ey(a, M) for any
a € M. Without loss of generality, let us assume the former. Then g is strictly monotonic
on M/FEs. Further, since R(a, M) is convex and infinite for any a € M, then g(a) < f(a) for
any a € M.

Consider the following formulas:

o1(z) == Jylr <y A R(z,y) AN\Vt(x <t <y — R(z,t))] AVz[z <z — —R(z, 2)],

$a() := Fylr <y A R(z,y) AJyi(z <y <y A-R(z,m)),
¢3(x) == Fy13ye[yr <z <y2 A R(x,y1) A R(w, y2)],
¢a(z) := R(z,z) A Iyi[yn <z A R(z,y1) ANVy(R(z,y) =y < )],
¢5(x) == Jyly <z A R(z,y) ANVE[R(z,t) = t < z] A =R(z, ).

Suppose that ¢1(M) = M, i.e., a = g(a) for any a € M. Then it is obvious that g is
strictly increasing on M. Suppose the contrary: f is strictly decreasing on M/Es. Take
arbitrary a,b € M such that a < b A =FEy(a,b). Then we obtain that f(b) < f(a), whence

a<b=g() < f(b) < f(b) <[f(a)
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Take an arbitrary ¢ € M such that f(a) < c. Then we have: =FEs(a,c). Since f is strictly
decreasing on M/ FEs, then f(c) < f(a), where ¢ &€ ¢1(M), which contradicts our assumption.
Let now ¢2(M) = M, i.e. a < g(a) for any a € M. Suppose the contrary: g is strictly
decreasing on M/E, or f is strictly decreasing on M/E,. Without loss of generality, let us
assume the former. Take arbitrary a,b € M such that a < bA—E3(a,b). Then we obtain that
g(b) < g(a), whence
a<b<g) <gla).

Take an arbitrary ¢ € M such that g(a) < c¢. Then we have: —=Ejs(a,c). Since g is strictly
decreasing on M/Es, then g(c) < g(a), whence ¢ € ¢o(M), which again contradicts our
assumption. The case where f is strictly decreasing on M/Fj is considered similarly.

Let now ¢3(M) = M, ie. g(a) < a < f(a) for any a € M. Suppose the contrary: g is
strictly decreasing on M/FEs or f is strictly decreasing on M/Es. Without loss of generality,
let us assume the former. Take arbitrary a,b € M such that a < b A =Es(a,b). Then we
obtain that g(b) < g(a), whence

g(b) < gla) <a<b.

Let us take an arbitrary ¢ € M such that ¢ < g(b). Then we have: —Ej3(c,b). Since g is
strictly decreasing on M/FE,, then g(b) < g(c), whence ¢ € ¢3(M), which again contradicts
our assumption. The case where f is strictly decreasing on M/FEs is considered similarly.

The cases when ¢4(M) = M or ¢5(M) = M are considered similarly.

Note that similar reasoning is true for functions ¢’ and f’. Here we establish that ¢’
and f’ are strictly increasing on M/E}, where El)(x,y) is an (-definable equivalence relation
partitioning M into infinitely many convex classes. Obviously, either Es(a, M) C Ef(a, M),
or El(a, M) C Es(a, M) for any a € M. Thus, the theorem is completely proved.
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Kymnemos B.III. 1-TPAH3UTUBTIK PETTEJ/I'EH TEOPUSAJIAP/IBIH TPUBUAJI-
JIbI EMEC BAWBITYJIBIP.

Byn xxywmbicTa 6i3 1-TpaH3UTHUBTI PETTEITEH TEOPUSIAPABIH 1-TPAH3UTUBTLIKTI cakTaii-
TBIH TPUBHUAJIJIBI eMec OalbITynapiael 3eprreiiMis. CoHjali-ak, ajici3 o-MUHUMAJIJIBI ChI3BIKTHIK
peTTep/ii KBUBAJIEHTTED KATBIHACTAD, YHAPJIBI (DYHKIUIIAD KaHe epiKTi OMHAPJIBIK KaThIHA~
crap OoliblHma OalibITyaap 3epTTeii. AJIbIHrad HaTuKejaepre cyiieHe OThIPLII, apTypJIi ajici3
O-MUHUMAJIJIBI TEOPUSIIAPIbIH 0TOACHLIAPHI VIIIH paHrici MaHIep TabbLIIbL.

Tyitiaai co3mep. AJcis o-MUHUMAJIBIK, 1-TPaH3UTUBTIK, JOHECTIK PAHIICI, TEOPUSHBI
DalibITy, PETTETEH TEOPUs, TeOPUsIap 0TOAChIHA APHAJITAH PAHTICI.

Kymmemos B.III. HETPUBWAJIBHBIE OBOTAIIIEHUA 1-TPAH3UTUBHBIX VYIIO-
PAJIOYEHHBIX TEOPUIT

B nacrostieit padore Mbl UCCIElyeM HETPUBUAIbHBIC 000TAICHUS 1-TPAH3UTUBHBIX YIIOPSI-
JIOYEHHBIX TEOPUil, COXpaHLIONye 1-TPaH3UTUBHOCTh. B 4acTHOCTH, OBLIIN MCCJIEI0BAHBI 000-
raienus ¢jiabo O-MUHIMAJIbHBIX JINHEHHBIX IMTOPSIKOB OTHOIIEHUSMU SKBUBAJICHTHOCTH, YHAD-
HbIMU (DYHKIUSAME U IPOU3BOJILHBIMU OMHAPHBIME OTHOIIeHusiMu. Ha ocHoBe 1moJiyYeHHbIX pe-
3yJIBTATOB yCTAHOBJICHBI 3HAUEHUsI PAHTOB JJIsI PA3JIUMIHBIX CEMENUCTB C1ab0 O-MUHUMATbHBIX
TEOPUIl.

KuroueBbie ciioBa: ciiabast 0O-MUHUMAJIBHOCTD, 1-TPaH3UTUBHOCTH, PAHI BBIMYKJIOCTH,
oborarreHne TeOpuu, yIopsa0vueHHasT TeOPHUsl, PAHT /I CeMelCcTBa TeOPHil.
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