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On algebras of binary isolating formulas for weakly
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Abstract. This paper is devoted to the study of weakly circularly minimal circularly ordered structures.
The simplest example of a circular order is a linear order with endpoints, in which the largest element
is identified with the smallest. Another example is the order that arises when going around a circle. A
circularly ordered structure is called weakly circularly minimal if any of its definable subsets is a finite
union of convex sets and points. A theory is called weakly circularly minimal if all its models are weakly
circularly minimal. Algebras of binary isolating formulas are described for Ry-categorical 1-transitive non-
primitive weakly circularly minimal theories of convexity rank 2 with a trivial definable closure having
a monotonic-to-right function to the definable completion of a structure and non-having a non-trivial

equivalence relation partitioning the universe of a structure into finitely many convex classes.

Keywords. algebra of binary formulas, Xo-categorical theory, weak circular minimality, circularly ordered

structure, convexity rank.

1 Preliminaries

Algebras of binary formulas are a tool for describing relationships between elements of the
sets of realizations of a one-type at the binary level with respect to the superposition of
binary definable sets. A binary isolating formula is a formula of the form ¢(z,y) such that
for some parameter a the formula ¢(a,y) isolates a complete type in S({a}). The concepts
and notations related to these algebras can be found in the papers [1, 2]. In recent years,
algebras of binary formulas have been studied intensively and have been continued in the
works [3]-[11].

2010 Mathematics Subject Classification: 03C64; 03C35.

Funding: This research is funded by the Science Committee of the Ministry of Science and Higher Edu-
cation of the Republic of Kazakhstan (Grant No. BR20281002).

DOI: https://doi.org/10.70474 /kmj24-4-01

(©) 2024 Kazakh Mathematical Journal. All right reserved.



On algebras of binary isolating formulas. . . 7

Let L be a countable first-order language. Throughout we consider L-structures and
assume that L contains a ternary relational symbol K, interpreted as a circular order in these
structures (unless otherwise stated).

Let M = (M, <) be a linearly ordered set. If we connect two endpoints of M (possibly,
—o0 and +00), then we obtain a circular order. More formally, the circular order is described
by a ternary relation K satisfying the following conditions:

(col) VaVyVz(K(z,y,z) = K(y,z,x));

(co2) VaVyVz(K(z,y,z2) NK(y,z,2) @z =yVy=2zVz=u1),

(co3) VaVyVz(K (x,y, z) = Vt[K(z,y,t) V K(t,y, 2)]);

(cod) VaVyVz(K (z,y,z) V K(y,z, 2)).

The following observation relates linear and circular orders.

Fact 1. [12] (i) If (M, <) is a linear ordering and K is the ternary relation derived from <
by the rule K(x,y,2) = (<y<z)V(z<z<y)V(y < z<uz), then K is a circular order
relation on M.

(11) If (N, K) is a circular ordering and a € N, then the relation <, defined on M :=
N\ {a} by the rule y <, z :& K(a,y,2) is a linear order.

Thus, any linearly ordered structure is circularly ordered, since the relation of circular
order is ()-definable in an arbitrary linearly ordered structure. However, the opposite is not
true. The following example shows that there are circularly ordered structures not being
linearly ordered (in the sense that a linear ordering relation is not (-definable in an arbitrary
circularly ordered structure).

Example 2. [13, 14] Let Q% := (Qq2, K, L) be a circularly ordered structure, where L =
{03, 0%}, for which the following conditions hold:

(i) its domain Q9 is a countable dense subset of the unit circle, no two points making the
central angle ;

(ii) for distinct a,b € Qg

(a,b) € 0p & 0 < arg(a/b) < ,

(a,b) € 01 & 7w < arg(a/b) < 2m,

where arg(a/b) means the value of the central angle between a and b clockwise.
Indeed, one can check that the linear order relation is not (-definable in this structure.

The notion of weak circular minimality was studied initially in [15]. Let A C M, where
M is a circularly ordered structure. The set A is called convex if for any a,b € A the following
property is satisfied: for any ¢ € M with K(a,c,b), ¢ € A holds, or for any ¢ € M with
K(b,c,a), c € Aholds. A weakly circularly minimal structure is a circularly ordered structure
M = (M, K,...) such that any definable (with parameters) subset of M is a union of finitely

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 6—21



8 Beibut Sh. Kulpeshov, Sergey V. Sudoplatov

many convex sets in M. The study of weakly circularly minimal structures was continued in
the papers [16]-21].

Let M be an Rg-categorical weakly circularly minimal structure, G := Aut(M). Following
the standard group theory terminology, the group G is called k-transitive if for any pairwise
distinct a1,a9,...,ar € M and pairwise distinct by, b, ..., b € M there exists g € G such
that g(a1) = b1,g(a2) = be,...,g(ag) = bg. A congruence on M is an arbitrary G-invariant
equivalence relation on M. The group G is called primitive if G is 1-transitive and there are
no non-trivial proper congruences on M.

(1) Ko(z,y,2) := K(z,y,2) Ny Zx ANy # z ANz # z.

(2) K(u1,...,u,) denotes a formula saying that all subtuples of the tuple (uy,...,u,)
having the length 3 (in ascending order) satisfy K; similar notations are used for K.

(3) Let A, B, C be disjoint convex subsets of a circularly ordered structure M. We write
K(A,B,C) if for any a,b,c € M with a € A, b € B, ¢ € C we have K(a,b,c). We extend
naturally that notation using, for instance, the notation Ky(A,d,B,C) if d ¢ AU B UC and
Ky(A,d, B) A Ky(d, B,C) holds.

Further we need the notion of the definable completion of a circularly ordered structure,
introduced in [15]. Its linear analog was introduced in [22]. A cut C(x) in a circularly ordered
structure M is a maximal consistent set of formulas of the form K (a,z,b), where a,b € M. A
cut is said to be algebraic if there exists ¢ € M that realizes it. Otherwise, such a cut is said to
be non-algebraic. Let C(z) be a non-algebraic cut. If there is some a € M such that either for
all b € M the formula K (a,z,b) € C(x), or for all b € M the formula K (b, z,a) € C(x), then
C(z) is said to be rational. Otherwise, such a cut is said to be irrational. A definable cut in
M is a cut C'(x) with the following property: there exist a,b € M such that K(a,z,b) € C(x)
and the set {c € M | K(a,c,b) and K(a,z,c) € C(z)} is definable. The definable completion
M of a structure M consists of M together with all definable cuts in M that are irrational
(essentially M consists of endpoints of definable subsets of the structure M).

[15] Let F'(x,y) be an L-formula such that F'(M,b) is convex infinite co-infinite for each
be M. Let F(y) be the formula saying y is a left endpoint of F(M,y):

ElzlEIzQ[Ko(zl, Y, 2’2) AN th(K(zl, t1, y) Nt 75 Yy — ﬁF(tl, y))/\
Vo (K (y,ta, 22) Nto # y — F(ta,y))].
We say that F(z,y) is convez-to-right if
M = VyVa[F(z,y) — F'(y) AV2(K(y, z,2) = F(z,y))].

If Fy(x,y), Fo(z,y) are arbitrary convex-to-right formulas we say F is bigger than F} if there
is a € M with Fy(M,a) C Fo(M,a). If M is 1-transitive and this holds for some a, it holds
for all a. This gives a total ordering on the (finite) set of all convex-to-right formulas F'(z,y)
(viewed up to equivalence modulo Th(M)).

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 6-21



On algebras of binary isolating formulas. . . 9

Consider F(M,a) for arbitrary a € M. In general, F(M,a) has no right endpoint in
M. For example, if dcl({a}) = {a} holds for some a € M then for any convex-to-right
formula F'(z,y) and any a € M the formula F'(M,a) has no right endpoint in M. We write
f(y) :=rend F(M,y), assuming that f(y) is the right endpoint of the set F(M,y) that lies
in general in the definable completion M of M. Then f is a function mapping M in M.

Let F(z,y) be a convex-to-right formula. We say that F(x,y) is equivalence-generating
if for any a,b € M such that M |= F(b,a) the following holds:

M E=Vx(K(b,z,a) Nz # a — [F(x,a) < F(z,b)]).

Lemma 3. [20] Let M be an Wg-categorical 1-transitive weakly circularly minimal structure,
F(x,y) be a convex-to-right formula that is equivalence-generating. Then E(x,y) := F(z,y)V
F(y,x) is an equivalence relation partitioning M into infinite convex classes.

Let E(x,y) be an (-definable equivalence relation partitioning M into infinite convex
classes. Suppose that y lies in M (non-obligatory in M). Then

E*(z,y) := 3y1Iyely1 # y2 AVUEK (y1,t,y2) — E(t,x)) A Ko(y1,y,y2)]-

Let M, N be circularly ordered structures. The 2-reduct of M is a circularly ordered
structure with the same universe of M and consisting of predicates for each (-definable relation
on M of arity < 2 as well as of the ternary predicate K for the circular order, but does not
have other predicates of arities more than two. We say that the structure M is isomorphic
to N up to binarity or binarily isomorphic to N if the 2-reduct of M is isomorphic to the
2-reduct of V.

Let f be a unary function from M to M. We say that f is monotonic-to-right (left) on
M if it preserves (reverses) the relation Ky, i.e. for any a,b,c € M such that Ky(a,b,c), we

have Ko(f(a), f(b), f(¢)) (Ko(f(c), F(b), f(a)))-

The following definition can be used in a circular ordered structure as well.

Definition 4. [23|, [24] Let T be a weakly o-minimal theory, M be a sufficiently saturated
model of T, A C M. The rank of convezity of the set A (RC(A)) is defined as follows:

1) RC(A)=—-1if A=10.

2) RC(A) =0 if A is finite and non-empty.

3) RC(A) > 1if A is infinite.

4) RC(A) > a + 1 if there exist a parametrically definable equivalence relation E(z,y)
and an infinite sequence of elements b; € A,7 € w, such that:

e For every i,j € w whenever i # j we have M = —~E(b;, b;);

e For every i € w, RC(E(x,b;)) > « and E(M,b;) is a convex subset of A.

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 6—21



10 Beibut Sh. Kulpeshov, Sergey V. Sudoplatov

5) RC(A) > § if RC(A) > « for all a < 4, where § is a limit ordinal.

If RC(A) = a for some «a, we say that RC(A) is defined. Otherwise (i.e. if RC(A4)) > «
for all ), we put RC(A) = oc.

The rank of converity of a formula ¢(x,a), where a € M, is defined as the rank of
convexity of the set ¢(M,a), i.e. RC(¢p(x,a)) := RC(4(M,a)).

The rank of convexity of a 1-type p is defined as the rank of convexity of the set p(M),
ie. RC(p) := RC(p(M)).

In particular, a theory has convexity rank 1 if there is no definable (with parameters)
equivalence relations with infinitely many infinite convex classes.

The following theorem characterizes up to binarity Nop—categorical 1-transitive non-primi-
tive weakly circularly minimal structures M of convexity rank greater than 1 having both a
trivial definable closure and a convex-to-right formula R(z,y) such that r(y) := R(M,y) is
monotonic-to-right on M:

Theorem 5. [16] Let M be an No—categorical 1-transitive non-primitive weakly circularly
minimal structure of convezity rank greater than 1, dcl({a}) = {a} for some a € M. Suppose
that there exists a convex-to-right formula R(x,y) such that r(y) := R(M,y) is monotonic-
to-right on M. Then M is isomorphic up to binarity to
Lk = (M, K® E} E3,... EZ E} |, R,

where M is a circularly ordered structure, M is densely ordered, s > 1; Es11 ts an equivalence
relation partitioning M into m infinite convex classes without endpoints; E; for everyl <1i < s
is an equivalence relation partitioning every E;i1-class into infinitely many infinite convex
E;-subclasses without endpoints so that the induced order on E;-subclasses is dense without
endpoints; R(M,a) has no right endpoint in M and r*(a) = a for alla € M and some k > 2,
where r*(y) == r(r*(y)); for every 1 <i < s+ 1 and any a € M

My 1 B (a,7(a)) ANVY(Ei(y, a) = Fu[B] (u, () A Ef (u,7(y))]),
m =1 or k divides m.

In [7] algebras of binary isolating formulas are described for Rg-categorical weakly cir-
cularly minimal theories with a primitive automorphism group. In [8] algebras of binary
isolating formulas are described for Ng-categorical weakly circularly minimal theories of con-
vexity rank 1 with a 1-transitive non-primitive automorphism group and a non-trivial definable
closure. In [9]-[10] algebras of binary isolating formulas are described for Ry-categorical weakly
circularly minimal theories of convexity rank greater than 1 with a 1-transitive non-primitive
automorphism group and a non-trivial definable closure. In [11] algebras of binary isolating
formulas are described for Ny-categorical weakly circularly minimal theories of convexity rank
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On algebras of binary isolating formulas. . . 11

1 with a 1-transitive non-primitive automorphism group and a trivial definable closure. Here
we describe algebras of binary isolating formulas for Ny-categorical 1-transitive non-primitive
weakly circularly minimal theories of convexity rank 2 with a trivial definable closure having a
monotonic-to-right function to the definable completion of a structure and non-having a non-
trivial equivalence relation partitioning the universe of a structure into finitely many convex
classes.

2 Results

Definition 6. [2] Let p € S1(0)) be non-algebraic. The algebra P, ) is said to be deterministic
if uy - ug is a singleton for any labels w1, ua € py ().

Generalizing the last definition, we say that the algebra P, is m-deterministic if the
product uy - ug consists of at most m elements for any labels u1, uz € p,(,). We also say that
an m-deterministic algebra P, ;) is strictly m-deterministic if it is not (m — 1)-deterministic.
Obviously, strict 1-determinacy of an algebra is equivalent its determinacy.

Example 7. Consider the structure My, = (M, K3, F?, R?) from Theorem 5 with the
condition that the function r(y) := R(M,y) is monotonic-to-right on M.
We assert that T'h(Mj ; 5) has seven binary isolating formulas:

Oo(x,y) =z =y,
01($,y) = Ko(l',y, r(a:)) A El(x’y)a

02(33, y) = KO(:E’ y,r(a?)) N ﬂlal(xv y) A _'Eik(ya T(CL‘

)
03(x,y) := Koz, y,r(x)) A =Er(z,y) A Ei(y,r(z)),
Os(x,y) = Ko(r(x),y, ) A ~Er(z,y) A By (y, 7(2)),
05(x,y) := Ko(r(z),y,z) A =Er(z,y) A ~Ei(y,7(x)),
O6(x,y) := Ko(r(z),y,x) A Er(z,y),

and the following holds for any a € M:

Ko(bo(a, M), 01(a, M), 02(a, M),05(a, M), 04(a, M), 05(a, M), 06 (a, M)).
Define labels for these formulas as follows:

label k for 0y (x,y), where 0 < k < 6.

It is easy to check that for the algebra B M, the Cayley table has the following form:

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 6—21



12 Beibut Sh. Kulpeshov, Sergey V. Sudoplatov

10 1 2 3 4 5 6

0] {0y | {1} {2} {3} {4} {5} {6}
Ly {1 {2} (3.4} | {4 {5} {0,1,6}
2 | {2} {2} {2,3,4,5} {5} {5} {0,1,2,5,6} {2}

31 {3}| {34} {5} {6y 11{0,1,6} {2} {3}

41 {4 {4 {5} {0,1,6} | {1} {2} {3,4}
5 {5} {3y [{0,1,2,56) | {2} 2y | {23,451 | {5}

6 | {6} | {0,1,6} {2} {3y | {34} {5} {6}

By the Cayley table the algebra 3 M, , 18 commutative and strictly 5-deterministic.

Theorem 8. The algebra ‘BM/ . of binary isolating formulas with monotonic-to-right func-
tion v has 3k + 1 labels, s commutatwe and strictly 5-deterministic for every k > 2.

Proof of Theorem 8. We assert that the algebra ‘BM{ . has 3k + 1 binary isolating
formulas: -

Oo(z,y) ==z =y,
01(z,y) == Ko(z,y,7(x)) A Er(z,y),
O2(z,y) == Ko(z,y,r(z)) A ~Ei(z,y) A ~E1(y,7(2)),
03(z,y) == Ko(z,y,7(z)) A Ef(yar(w)),

O31-2(w,y) = Ko(r'(z),y,7'(x)) A Ef (y,r' ' (z)), where 2 <1<k —1,
O31-1(w,y) := Ko(r' " (z),y,7'(x)) A =Ef (y, ' (x)) A —Ef(y, 7' (x)), where 2 <1<k —1,
O31(z,y) == Ko(r''(2),y, 7' (2)) A E{(y, 7' (2)), where 2 <1<k -1,
O3p—a(x,y) = Ko(r* ' (2),y,2) A Ef (y,r* ! (),

Os5_1(2,y) == Ko(r* 1(z),y,2) A =Et(y,r" () A ~E1(y, 2),

O3 (w,y) := Ko(r" ' (z),y,2) A Exr(y, o).

Thus, we have 1+ 3+ 3(k —2) +3 = 3k + 1 binary isolating formulas. Moreover, we have
defined the formulas so that for any a € M the following holds:

Ko(eo(a, M), 01((1, M), 92(&, M), N ,«93k_1(a, M), 93k(a, M))

Prove now that the algebra B M, is commutative and strictly 5-deterministic for every
k> 2.

Firstly, obviously that 0-1 =1-0 = {l} for any 0 < < 3k. Suppose further that I; # 0
and [y # 0.
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Consider the following formula

3t[6, (x,t) A Oy, (t, y)].

Case 1: [1 =3mq — 2 for some 1 < m; <k —1.

We have: Ko(r™~1(x),t,7™(z)) and Ej(t,r™ " 1(x)).

Let Iy = 3mo—2 for some 1 < mg < k—1,i.e. Ko(r™~1(t),y,r™2(t)) and Ef(y,r™271(t)).
Then we obtain the following;:

Ko(rm1+m2_2 (2),y, pratme—l (x)) and Ej(y, rm1+m2_2(a:)).

Suppose firstly that (3m;—2)+(3mae—2) < 3k+1. We assert that in this case mj+mao—1 <
k. Then we have l; - lo = {3(m1 +m2 — 1) — 2}.

Obviously, (3m; —2) + (3mae — 2) # 3k + 1.

Suppose now that (3m;—2)+(3me—2) > 3k+1. Let s = (m;+ma—1)[mod k]. Obviously,
0<s<k—1. If s =0, we have Ko(r*(2),y,r) and Ef(y,7*"1(x)), i.e. Iy - lo = {3k — 2}.
If 1 < s <k—1then we have Ko(r*~(z),y,7*(x)) and E}(y,r*"(z)), i.e. Iy -1y = {35 — 2}.

Let now Iy = 3mg—1 for some 1 < mg < k—1. Then we have the following: Ko(r™21(t),
y, ™2(t)), ~Ef(y,r™2~Y(t)) and —~E}(y,7™2(t)). Whence we obtain:

Fo(rm e 2(z),y, A (1)), I (g, 72 () and B (g, 7 ().

Suppose firstly (3m; —2) + (3mg — 1) < 3k + 1. We assert that mj +mg — 1 < k. In this
case we have [y - lo = {3(m1 +ma — 1) — 1}.

Obviously, also (3m; —2) + (3ma — 1) # 3k + 1.

Suppose now (3mj —2) + (3mg — 1) > 3k + 1. Let s = (mq + mg — 1)[mod k]. Obviously,
0<s<k-1 Ifs =0, we have Ko(r* 1(z),y,2), =Ef(y,v*"1(z)) and =FE(y,z), i.e.
li-lp = {3k —1}. If 1 < s < k— 1 then we have Ko(r*~!(z),y,r*(x)), ~Ef(y,r*"(z)) and
—Ej(y,r*(x)), i.e. Iy -la = {3s — 1}.

Consider the product I - I;. We have: Ko(r™2~1(x),t,7m2(x)), ~Ef(t,r™2~1(x)), ~E}(t,
rm2(x)), Ko(r™=1(t),y,r™(¢)) and Ej(y,7™ ~1(t)). Whence we obtain:

Ko(r™*ma=2(z),y, r™ 42 (@), 2By (y, r™ 72 (2)) and B (y, v (2)).

If (3m1—2)—|—(3m2—1) < 3k+1thenly-l; = {3(m1—|—m2—1)—1}. If (3m1—2)—|—(3m2—1) >
3k + 1 then in case s = 0 we obtain ly - [ = {3k — 1}, and in case 1 < s < k — 1 we obtain
l2 . l1 == {38 - 1}

Let now Iy = 3mg for some 1 < mgy < k — 1. Then we have: Ko(r™2~1(t),y,r™2(t)) and
Ef(y,r™2(t)). Whence we obtain:

Ej (y, rm1+m2_1(a:)), and either Ko(rm1+m2_2(:v),y,rm1+m2_1(w)) or

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 6—21



14 Beibut Sh. Kulpeshov, Sergey V. Sudoplatov

Kg(rmﬁm?*l (z),vy, prmtme (2)).

Suppose firstly that (3m; — 2) + 3ma < 3k + 1. Then we assert that m; +mg — 1 < k.
Whence we obtain: [y -l = {3(m1 +ma —1),3(m1 +ma — 1) + 1}.

Suppose now that (3m; —2)+3mg = 3k+1. This case is possible since (3m; —2)+3mgy =
3(m1 +mg — 1) 4+ 1. We also have: (3m; —2) 4+ 3mg = 3k + 1 iff m; + mg — 1 = k. Thus, we
obtain: Ei(y,z) and either Ko(r*~!(x),y,x) or Ko(z,y,r(x)), i.e. Iy -lo = {3k,0,1}.

Let now (3m; — 2) + 3mg > 3k + 1. Consider s = (m; + mg — 1)[mod k]. We prove that
0<s<k—1. Indeed, (3m; —2)+3me=3(my+ma—1)+1>3k+1iff mi+mo—1> k.
Sincemi <k—land mg <k—1m;+ma—1<(k—1)+(k—1) =1= 2k — 3. Thus,
k<mi+mg—1<2k—3, whence 0 < s < k— 1. We have:

Ef(y,r°(x)) and either Kg(rsfl(x), y,m%(x)) or Ko(rs(a:),y,r”l(a:)).

Whence we obtain: Iy -l = {3s,3s + 1}.
Consider the product ly-l;. We have: Ko(r™~1(z),t,r™2(z)), Ef(t, r™2(x)), Ko(r™~1(t),
y, 7™ (t)), and E}(y,r™~1(¢)). Whence we obtain the following:

E’f(y,rmﬁmrl(a:)), and either K()(T‘ml+m272($), y,rmﬁmz*l(x)) or

Ko(rm1+m2_1 (2),y, prmtme (x)).

If 3msy + (3m1 — 1) < 3k+1thenly - -l; = {3(m1 + mo — 1),3(m1 + mo — 1) + 1} If
3mg + (3m1 — 1) =3k + 1 then Iy -1l; = {3k,0,1}. If 3mgy + (3m1 — 1) > 3k + 1 then
lh -l = {35, 3s + 1}

Let now Iy = 3k — 2, i.e. Ko(r*=1(t),y,t) and Ef(y,r*~1(t)). Whence we obtain:

Ko(r™ =2 (), y, ™! (@) and B (y,r™ 2 (@),

ie. Ko(r™m=2(z),y,r™1(x)) and Ej(y,r™ 2(x)). Consequently, I; -l = {3(m1 — 1) — 2}.
Consider the product Iy - I;. We have: Ko(r*~(z),t,z), Ef (t,v*1(2)), Ko(r™~(t),,
r™1(t)), and Ef(y,r™~1(t)). Whence we obtain:

Ko(r™ ™2 (z),y,r™ " (2)) and B (y, 7™ (x)),

i.e. l2 . ll = {3(7711 - 1) - 2}.
Let now ly = 3k — 1, i.e. Ko(r*=(t),y,t), ~Ef(y,r*71(t)) and —=F}(y,t). Whence we
obtain:
Ko(r™ ™2 (z),y, ™ (2)), B (y, ™ 2 (x)) and ~E (y, 7™} (z)).

Thus, ll . lg = {3(777,1 - 1) - 1}.
Consider the product Iy -11. Then we have: Ko(r*~(z),t,z), =Ef(t,7* 1 (z)), = Ef(x,1),
Ko(r™=1(t),y, r™1(t)), and Ef(y,r™ ~1(t)). Whence we obtain:

Ko(r™ =2 (x),y,r™ (), =B (y, 7™ " *(x)) and ~Ef (y,r™ ' (z)),
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ie. lg . l1 = {3(m1 - 1) - 1}.
Let now Iy = 3k, i.e. Ko(r*=1(t),y,t), and E}(y,t). Whence we obtain:

Ei(y,r™ ! (x)) and either Ko(r™ (), y,r™ " (z)) or Ko(r™ (), y,r"™ (z)),

i.e. l1 . l2 = {3(’!711 — 1),377”61 — 2}.
Consider the product Iy - [;. Then we have: Ko(r*~1(z),t,z), Ef(z,t), Ko(r™L(t),y,
r™i(t)), and Ef(y,r™1(t)). Whence we obtain:

Ei(y,r™ ! (x)) and either Ko(r™ ~>(z),y,r™ "} (2)) or Ko(r™ ! (z),y, ™ (x)),
i.e. l2 . ll = {3(7711 — 1), 3m1 — 2}

Case 2. Iy =3mq — 1 for some 1 <m; <k —1.

We have the following: Ko(r"™ ~1(x),t,r™ (z)), ~Ef(t,r™~1(x)) and —E;(t,r™(x)).

Let Iy = 3mg — 1 for some 1 < mg < k —1,1i.e. Ko(r™2=1(t),y,7m2(t)), ~Ef(y,r™2"1(t))
and —E7 (y,r™2(t)). Whence we obtain:

either Ko(r™m272(g), g, 7™+ 271 (1)) or Ko(r™ ™27 (z), y, r™TM2(g)).

Suppose firstly that (3m; — 1) + (3mg — 1) < 3k + 1. It can be checked that (3m; —1) +
(3mg — 1) < 3k + 1 iff m; +mgo — 1 < k. Then

li-lg ={3(m1+ma—1)—1,3(m1 +ma—1),3(m1 +ma —1)+1,3(m1 +ma — 1) +2}.

Let now (3mj —1)4 (3ma—1) = 3k+1. This case is possible, and (3m; —1)+ (3mg—1) =
3k + 1 iff my + mo — 1 = k. Then we have: either Ko(r*(z),y,2) or Ko(z,y,r(x)).
Consequently, I; - lo = {3k — 1,3k, 0,1, 2}.

Let now (3m; — 1) + (3mg — 1) > 3k + 1. Clearly, (3m1 — 1) + (3ma — 1) > 3k + 1 iff
mi+ma—1 > k. Let s = (m1+mgo—1)[mod k]. Since k < m;+mo—1 < k—14+k—1-1 = 2k—3,
we have 0 < s < k—3. Thus, we obtain: either Ko(r*~!(x),y,r*(x)) or Ko(r*(z),y,r*1(z))),
whence Iy - lo = {3s — 1,3s,3s + 1,35 + 2}.

Let Iy = 3mg for some 1 < mg < k — 1, i.e. Ko(r™27L(t),y,7™2(t)) and Ej(y,r™2(t)).
Whence we obtain:

Kofr™ 7 @),y 1747 ), 2 ™ 7 @) and B (074 a).

Suppose firstly that (3mq — 1) +3mga < 3k + 1. It can be checked that (3m; — 1) +3mg <
3k + 1iff m; +mg — 1 < k. In this case l; - lo = {3(m1 + mg) — 1}.

The case (3m1—1)43ms = 3k+1 is impossible. Suppose that (3mi—1)+3me > 3k+1. It
can be checked that (3m;—1)+3mgy > 3k+1iff mi+mo—1 > k. Let s = (my+mo—1)[mod k].
Since k<mi+mo—1<k—14k—1—1=2k—3, we have 0 < s < k — 3. Thus, we obtain:

Ko(r®(x),y, """ (2)), =Eq (y,r* () and =Ej (y, 7" (x)),
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whence [y - lo = {3(s+1) — 1}.
Consider the product lo-l1. We have: Ko(r™2~1(xz),t,7™2(x)), B} (t,r™2(x)), Ko(r™~1(t),
y, ™ (t)), =Ef (y,r™~Y(t)) and —E}(y,7™(t)). Whence we obtain:

Ko(rm™Fma=l(z),y, r™ 2 (2)), 2By (y, v "2 (2)) and —Ej (y, ™2 ().

If (3my1 — 1)+ 3ma < 3k +1 then Iy -l = {3(my +mg) — 1}. If (3m1 — 1)+ 3mp > 3k + 1
then la - 13 = {3(s+ 1) — 1}, where s = (m1 + ma — 1)[mod k].
Let now lp = 3k — 2, i.e. Ko(r*~1(t),y,t) and Ef(y,7*~1(¢)). Whence we obtain:

Ko(r™ =2 (),y,r™ (), ~E{ (y, 7™ ~*(x)) and =E{ (y,r™ ! (2)).

Consequently, l; - lo = {3(m1 — 1) — 1}.
Consider the product Iy - I;. We have: Ko(r™ 2(x),y,r™ (z)), =E}(y,r™~%(z)) and
=Ej(y,r™~Y(x)), whence I - I} = {3(m1 — 1) — 1}.
Let now ly = 3k — 1, i.e. Ko(r*=1(t),y,t), ~Ef(y,r*71(t)) and —=F}(y,t). Whence we
obtain:
either Ko(r™ = 2(z),y,r™ Y(z)) or Ko(r™ 1(z),y,r™ (z)).

Clearly, (3mq — 1) +3(k—1) > 3k + 1. Let s = 3(my — 2), whence 4 < s < k — 5. Then
ll . lg = {3(777,1 - 1) - 1,3(m1 - 1),3777,2 - 2,37712 - 1}.

Consider the product Iy -11. Then we have: Ko(r*~1(z),t,z), =Ef(t,7* 1 (z)), ~Ef(x,1),
Ko(r™=1(t),y, r™i(t)), =Ef(y,7™~L(t)), and ~EF(y,r™1(¢)). Whence we obtain:

either Ko(rmld(x),y,rml*l(x)) or Ko(rmlfl(x),y,rml(x)),

1.e. ZQ . ll = {3(m1 - 1) - 1,3(m1 - 1),3m2 - 2,3m2 - 1}.
Let now lp = 3k, i.e. Ko(r*=1(t),y,t), and Ef(y,t). Whence we obtain:

Fo(r™ =2 (@), y, 7™ (&), =B} (g, ™ (@) and —Ef (y,r™ (x),

i.e. ll . l2 == {3m1 - 1}
Consider the product Iz - [;. Then we have: Ko(r*~1(z),t,z), Ef(x,t), Ko(r™~L(t),y,
(L)), =B (y, r™~1(x)) and —Ef(y, 7™ (z)). Whence we obtain:

Koo ) .07 (1), ~E (.17 &) amd B (g, (),
e ly-ly = {3m1 - 1}

Case 8. Iy = 3my for some 1 <m; <k —1.

We have: Ko(r™~1(x),t,7™(z)) and Ef(t,r™ (z)).

Let Iy = 3mg for some 1 < mg < k — 1, ie. Ko(r™2~1(t),y,r™2(t)) and Ej(y,7™2(t)).
Whence we obtain the following:

KO(Tml+m2_1($)7 Y, Tm1+m2 (l‘)) and Eik (y7 Tml+m2 (l‘))
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Suppose firstly that 3m; + 3mo < 3k + 1. It can be checked that 3my 4+ 3mo < 3k + 1 iff
mi+mo < k. If mj +mg =k then Iy -lo = {3k}. If m; +ma < k then [1 -lo = {3(m1+m2)}.

The case 3mi + 3mg = 3k + 1 is impossible. Suppose that 3mi + 3mg > 3k + 1. It
can be checked that 3mq + 3mg > 3k + 1 iff m; +mg > kK iff miy + mog — 1 > k. Let
s = (my+mg—1)[mod k|. Since k <mj;+me—1<k—-—1+k—1—-1=2k— 3, we have
0 < s <k — 3. Thus, we obtain:

Ko(r*(z),y,r* (2)) and B (y,r*"(2)),

whence [y -l = {3s}.
Let now lp = 3k — 2, i.e. Ko(r*=1(t),y,t) and E}(y,7*71(t)). Whence we obtain:

Ef(y,rml*l(x)) and either KO(Tm“Q(x),y,rml*l(x)) or K()(T'mlil(il'),y,’f'ml(x)).

Consequently, [; - lo = {3(m1 — 1),3m; — 2}.
Consider the product I3 - I. We have: Ko(r*=1(x),t,2), Ef(t,r* 1 (x)), Ko(r™~1(t), v,
r™(t)), and Ef(y,r™ (t)). Whence we obtain:

Ei(y,r™ ! (x)) and either Ko(r™ (), y,r™ " (z)) or Ko(r™ (), y,r"™ (z)),

i.e. lg . ll == {3(m1 - 1), 3m1 - 2}
Let now ly = 3k — 1, i.e. Ko(r*=1(t),y,t), ~E;(y,7*"1(t)) and —E1(y,t). Whence we
obtain:
KO(Tml_l(x)ayvrml (x))7_'ET(y7Tml_1(t))7 and ﬁEi‘(yﬂdml (t))7

i.e. ll . lg = {3m1 - 1}
Consider the product Iy - I1. We have the following: Ko(r¥~1(z),t,z), =F;(t,r*1(x)),
—Ef(z,t), Ko(r™=1(t),y, r™(¢)) and Ej(y,7™ (t)). Whence we obtain:

Ko(r™ = (2),y,r™ (@), ~Ef (y, ™ = (1)), and —Ef (y,r™ (1)),

i.e. lg . ll = {3m1 - 1}.
Let now Iy = 3k, i.e. Ko(r*~1(t),y,t), and E;(y,t). Whence we obtain:

Ko(r™~Y(z),y,r™ (z)) and Ex(y,r™ (z)),

i.e. ll . lQ = {3m1}.

Consider the product Iy - I1. Then we have: Ko(r*~1(x),t,2), Ei(x,t), Ko(r™1(t),y,
r™(t)) and Ef(y,r™ (z)). Whence we obtain: Ko(r™ ~!(x),y, r™i(z)) and Ej(y,r™ (x)),
ie. lg . ll = {Sml}

Case 4. 1y =3k — 2.
We have: Ko(r*~1(z),t,z) and Ej(t,r*1(z)).
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Let Iy = 3k —2,i.e. Ko(r*~1(t),y,t) and Ef(y,r*~1(t)). Whence we obtain the following:
Ko(r#2(a), .74 (2)) and B (g4 2 (0). e 11 = (3(k — 1) — 2}

Let now Iy = 3k — 1, i.e. Ko(r*=1(t),y,t), ~Ef(y,7*~1(t)) and —E;(y,t). Whence we
obtain:

Ko(r"2(z),y,r" " (2)), ~E{ (y, 7" *(2)), and ~Ex(y, 7"} (2)),

te. ly-lo={3(k—1)—1}.
Consider the product Iy - I1. We have the following: Ko(r*~1(z),t,z), =Ff(t,r*~1(x)),
—Ej(z,t), Ko(r™~1(t),y, r™1(¢)) and E}(y,r™(t)). Whence we obtain:

~Ef(y,r"2(x)), Ko(r" 2 (), 5,7 (2)) and =Ea(y, "~ (2)),

ie. lo-lh ={3(k—1)—1}.
Let now Iy = 3k, i.e. Ko(r*1(t),y,t), and E{(y,t). Whence we obtain:
Eik(yv rk_l(l')) and either KO(rk_Q(x)v Y, Tk_l(x)) or KO(Tk_l(x)’ Y, 33'),

ie. l1 . lg == {3k} — 2, 3(]{,’ — 1)}
Consider the product Iy - I1. Then we have: Ko(r*~1(z),t,2), Ei(z,t), Ko(r*=1(t),y,t)
and E;(y,r*=1(t)). Whence we obtain:

Ef(y,r*!(2)) and either Ko(r**(2),y,7*"" (2)) or Ko(r*~!(2),y, 2),
i.e. l2 . ll = {3]€ — 2, 3(]€ — 1)}

Case 5. l1 = 3k — 1.
We have: Ko(r*~1(z),t,x), =Ef(t,v*"1(z)) and —|E1(t x).
Let now Iy = 3k — 1, i.e. Ko(r*=1(t),y,t), ~Ef(y,r*"(t)) and —E;(y,t). Whence we
obtain:
K()(TkiQ(SU),y,x),—\ET(y,Tk72(l’)), and _‘El(y7x)’

ie. Iyl = {3k — 4,3k — 3,3k — 2,3k — 1}.
Let now lo = 3k, i.e. Ko(r*=1(t),y,t), and E1(y,t). Whence we obtain:

Ko(r* (@), t,2), ~Ef (t,r* " (2)) and =Eq(t, @),
i.e. ll . l2 == {3]43 - 1}
Consider the product I3 - I;. Then we have: Ko(r¥=1(z),t,z), E1(z,t), Ko(r¥=1(t),y,1),
=E;(y,7*=1(t)) and —FE1(y,t). Whence we obtain:
KO(Tk_l(aj)a t, $), _'Eik(ta rk_l(x)) and _'El(ta l‘),

i.e. l2 . l1 = {3]{: — 1}.
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Case 6. 1 = 3k.

We have: Ko(r*~!(z),t,z) and Ey(t,z).

Let Iy = 3k, i.e. Ko(r*~1(t),y,t) and Fy(y,t). Whence we obtain: Ko(r*~(z),t, ) and
Er(y,z), i.e. Iy - 1o = {3k}.

Thus, we established that the algebra B3 M, is commutative and strictly 5-deterministic
for every k > 2.
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Kynuemos B.III., Cynomraros C.B. JIOHECTIK PAHT'ICI 2 ©JICI3 HUKJIAIK M-
HUMAJIZIBI TEOPUAJIAP YIIIH BMHAPJIBIK OKITAYJ/IAY ®OPMVYJIAJIAPHI AJI-
I'EBPAJIAPBIH/TA

Byn )kywmbic IHKIJK peTTenreH 9/ci3 MUK MIHAMAJIBI KYPBIIBIMIAPAbI 3epTTEyTe
apuasgraH. Hukamik TopTinTiH eH KapamailbIM MBICAJIBI — COHFBI HYKTeJepi 6ap ChI3BIKTHIK,
TOPTIN, OHJA €H VJIKEH 3JIeMEHT eH KimrMmeH colikecreHmipisemi. Tarnr 6ip Mbicas, ImeHOep
OoifbIMeH KYpy Ke3iHgze maiiga 0osaTbiH TopTin. [IUKIIIK peTTesreH KypbLIbIM, erep OHBIH
dopMyTaIbIK IIMKi *KUBIHIAPBIHBIH K3 KEJITeH] JTOHeC *KUBIHIAP MEH HYKTEJIEPIiH aKbIPJIbI
GipJiecTiri 6oJica, OHBI 9JICI3 MUKJJIIK MUHAMAJIIBI el aTaiiabl. Teopust oJIci3 MUKJIIIK MIHHI-
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MaJIIBI eIl aTajiaabl, erep OHBIH OAPJIBIK MOMEIbIAEP] 9JICI3 MUKIIIK MIHUMAJIAL bosca. Bi3
KYPBLIBIMHBIH, AHBIKTAJIATHIH asKTaJIybIHA OH-MOHOTOH,IbI (PYHKIIUSIFA 1€ YKOHE KYPbLIBIMHBIH
HEri3ri KUBIHBIH JIOHEC KJIACCTAPBIHA MIEKTEYJI CAaHbIHa 06JIeTIH TPUBUAJIIHI €MeC SKBUBAJICHT-
TiK KaTblHaC Oap TPUBUAJILI aHBIKTAJIATBHIH TYUBIKTAJIYbIHA He IOHECTIK PaHrici 2 caHayJIbl
KaTerOPUSIJIbIK 1-0TTe i IPUMUTHBTIK eMeC 9JICI3 IUKJ/IIIK MUHIMAJI b TEOPUsIaphl YITiH Ou-
HapJIBbIK OKIayJiay popMy/IaJapbIHbIH aJIredpachlH CUIIaTTaARMBL3.

Tyiiia ce3nep: Obunap/bik, dhopmynanap aaredpacol, Ng-KaTeropusiiblK TEOPHUs, 9JICI3
MUKJIIK MUHEMAJIIBLIBIK, IIUKJIIIK PeTTeJreH KYPbLIbIM, JIOHECTIK PaHIiCI.

Kynmemos B.111., Cynomnaros C.B. Ob AJI'EBPAX BUHAPHBIX U30JIMPYOMIINX
OOPMVYJI J1JId CJIABO HUKJINYECKN MUHUMAJIBHBIX TEOPUIT PAHT'A BEI-
I[TYKJIOCTH 2

JlanHnast paboTa MOCBAIIEHA UCCIEIOBAHAIO CJIa00 IMUKINICCKH MUHUMAJbHBIX TUKJIAYIE-
CKU YIIOPSIIOYEHHBIX CTPYKTYp. lIpocreiimmuit mpuMep MUKINIECKOTO MOPSIKA — 9TO JIMHEH-
HBI TOPSJIOK C KOHIEBBIMU TOYKAME, B KOTOPOM HAMOOJIBIINI 3JIEMEHT OTOXKJICCTBUIN C HAU-
MeHbITUM. JIpyroit mpuMep — 9TO MOPSIIOK, BOSHUKAIONINI IIpu 00x0e okpyxkHocTu. [[ukim-
YeCKU yHOPS0UeHHAs CTPYKTYPa Ha3bIBAETCS CJIa00 NMUKJIMIeCKH MIHUMAJILHOMI, ecyu Jiiboe
ee HOpMYJIbHOE TOJIMHOYKECTBO SIBJISIETCST KOHEUHBIM OOLEIUHEHUEM BBIMYKJ/IBIX MHOXKECTB U
Touek. Teopust HA3BIBAETCS €00 MUKIMIECKH MUHUMAJIbHO, €CJIN BCE €€ MOJIEN SBJISIOTCS
c1a00 TMUKJINIECKH MUHIMAJIBHBIMEU. OMUCHIBAIOTCS aredphl OMHAPHBIX M30IUPYIOMUX (Hhop-
MYJI JIJIsi CIETHO KATErOPUYHBIX 1-TPAH3UTUBHBIX HEIIPUMUTUBHBIX CJIa00 IMUKIUIECKU MIHU-
MAaJIBHBIX TEOPUil PAHTa BBIMYKJIOCTU 2 ¢ TPUBUAJIBHLIM OIPEIETUMBIM 3aMbIKAHUEM, UMEIO-
IUX MOHOTOHHYIO BIIPaBO (DYHKIIMIO B OIPEEIMMOE HOIOJTHEHNE CTPYKTYPhl U HE UMEIOITUX
HETPUBUAJILHOTO OTHOIIEHUsT SKBUBAJEHTHOCTH, PA30MBAONIEr0 OCHOBHOE MHOXKECTBO CTPYK-
TYPBI HA KOHEYHOE YHCJIO BBIIYKJIBIX KJIACCOB.

Kmrouesnre cioBa. anrebpa OunapHbIX GOpMyJI, Ng-KaTeropudHasi TeOpus, ciaabast MUK JIN-
JecKad MUHUMAJIbHOCTD, HUKJINYECKU YIIOPSJIOYEeHHAA CTPYKTYpPa, PAHT BBILYKJIOCTH.
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Abstract. In this work, we study a Dirichlet problem for the viscous Burgers equation in a domain with
moving boundaries that degenerates at the initial moment. The primary method of investigation is the
Galerkin method, for which we construct an orthonormal basis suitable for domains with moving bound-
aries. Uniform a priori estimates are obtained, and based on these, theorems on the unique solvability
of the problem are proven using methods of functional analysis. The viscous Burgers equation serves as
a simplified model for studying fundamental aspects of nonlinear systems. It bridges the gap between
purely theoretical nonlinear equations (like the inviscid Burgers equation) and more complex systems

like the Navier-Stokes equations, making it a valuable tool in mathematical and physical research.

Keywords. Burgers equation, a priori estimates, Galerkin method.

1 Introduction

Let Q = {z,t| p1(t) < & < ¢a(t), 0 <t < T < oo} be a domain that degenerates into
a point. The functions ¢1(t) and @a(t) are defined on [0,7] and are strictly monotonically
decreasing and increasing functions, respectively, which belong to C1(0, T') with ¢1(0) = 2(0)
and Q; = (p1(t), pa2(t)) for t € (0, 7).

The study of solvability issues for initial-boundary value problems in domains with moving
boundaries, namely, in domains whose boundaries change over time, has been the focus of
numerous works; we note only a few of them [1, 2, 3, 4, 5]. In these works, we observed
that the lack of a suitable basis applicable to such domains necessitates transforming these
domains into ones with stationary boundaries. This transformation leads to the need to
study several auxiliary problems, significantly complicating the research process. Previously,
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5\
\

e /
T = py(t) / / T = py(t)

Figure 1: The degenerating domain (2.

in work [6], we constructed an orthonormal basis and demonstrated its application to solving
initial-boundary value problems in degenerate domains.

In this paper, in the domain ) we are studying the solvability issues of the following
boundary value problem for viscous Burgers equation:

Ovula,t) + u(z, t)dpu(w, t) — vdZu(z,t) + dpu(x,t) = f(z,1), (,1) € Q, (1)
with homogeneous boundary conditions

u(pr(t), 1) = u(pa(t),t) = 0, t € (0,T). (2)

We look for some conditions for functions ¢1(t) and 2(t) such that the problem (1)—(2)
admits a unique solution. So, to establish the unique solvability of the problem (1)—(2) we
suppose that

|/ (t)| < v forall t € [0,T], p(t) = pa(t) — p1(t), ¥ = const > 0. (3)
Here is our main result on the problem(1)—(2):

Theorem 1. Let f(x,t) € L*(Q) and conditions (3) be satisfied. Then boundary value problem
(1)~(2) has a unique solution

u e Hy'(Q) = {L(0,T; H3 () N H'(0,T; L*()) } -
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In work [7], the homogeneous version of problem (1)-(2) was previously studied in a non-
degenerate domain, where theoretical and numerical results were obtained by the authors. In
works [8, 9], the authors investigated the existence of solutions to boundary value problems
for the Burgers equation in both degenerate and non-degenerate domains.

The paper is divided as follows: Section 2 investigates one auxiliary initial boundary value
problem for the Burgers equation in the non-degenerate domain, where ¢1(1/n) # p2(1/n).
In Section 3, we obtain the necessary a priori estimates. In Section 4, we solve one spectral
problem and construct the necessary orthonormal basis, then, based on the obtained basis,
we introduce an approximate solution. In this section, we also prove the solvability of the
Cauchy problem for the coefficients of the approximate solution. The unique solvability of the
auxiliary problem is given in Section 5. Section 6 is devoted to the proof of the main result.
A brief conclusion completes the work.

2 Statement of auxiliary problem

We introduce the family of domains Q" = {z,t| ¢1(t) < = < @a(t), 1/n < t < T}, n € N¥,
ne€ N ={n € Nn>ny,1/ny < T} These domains Q" are “curvilinear” trapezoids for
which ¢1(1/n) # ¢2(1/n) holds and now the domains do not degenerate at the point ¢t = 1/n.
We aslo note that between the initial domain {2 and domains Q2" there are strict embeddings
Qr c Qv c ... c Q and, obviously, that nh_)rgo O =Q.

In the domains Q", we will consider the following initial boundary value problems for the
Burgers equation with respect to the functions uy,(z,t):

O (2, 1) 4 U (T, 1) Optin (2, 1) — V0P (2, 1) + Opin (2, 1) = frlz, 1), 4)
with homogeneous boundary
un(@l(t)ﬂf) = un(@?(t)vt) =0, te (1/77,,T), (5)
and initial conditions
un(,1/n) =0, x € Qs = (p1(1/n), p2(1/n)) . (6)
Obviously, if f(z,t) € L3(), then f,(x,t) € L?(Q"), where f,(z,t) is the restriction of
function f(x,t) € L?() to domains Q™.
For the problem (4)-(6) we have the following

Theorem 2. For every fired n € N* the initial-boundary value problem (4)—(6) is uniquely
solvable in the space up(z,t) € Hg’l(Q”).
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3 A priori estimates

Lemma 3. There is a positive, independent of n, constants Ky, Ko and K3, such that for all
t € [1/n,T) we have estimates

t
lan (@, )13y + / 10wt (0,7 220y A7 < K| fnl, )13 g (7)
1/n
t
1/n
|Betn 1) 32y < Kl Fl, )32 )

Proof. We start with the proof of the first a priori estimate. Multiplying the equation (4) by
the function u,(z,t) scalarly in L?(€;) and using the e-Cauchy inequlity we get

d
EHUTL(%QH%%QQ + 2V||8mun(x,t)H%2(Qt) < an(xat)H%?(Qt) + ”Un(ﬂfat)H%%Qt)- (10)

By applying the Gronwall inequality to (10), we obtain the estimate (7).
Let us proceed to the proof of the second a priori estimate. Multiplying the equation (4)
by —02uy,(x,t) scalarly in L?($);) we get
J w2(t)
allazun(%‘, t)H%Z(Qt) + 2V||6§Un(x7t)H%2(Qt) = 2‘ / un(:U,t)@xun(x,t)agun(x,t)dx

w1(t)

w2(t) p2(1)
+2' / fn (2, )02y, (2, t)dx —1—2‘ Opu(z, t)0u(z, t)d

e1(t) e1(t)
+ (|0zun(p2(2),1)]” + [0wun(01(2), 1)) - (11)

To estimate the nonlinear term in the right-hand side of (11) we use the following in-
equality ([10], Theorems 5.8-5.9, p.140-141)

1B (2, D) (0 < Kl|Oatin (@, 1)1 17 0, | Oatin (2, )| gy 0 7 Dt () € HH(S),

Young’s inequality (r=!+s7!1 =1):

V © ©
— 1/r 1/s Y < 2 r s
V| ‘(@ U) (@ ®>‘ < U+ 5 VI,
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with © =v/6, r =4/3, s =4,

3/2 1/2
U = [0un(z, )l 0+ V = K (@, D) sy 10w (@, 1) 50,

After which we will get

p2(t)
2 Vg2 2
’/un(x,t)axun(a:,t)ﬁzun(x,t)dac ggHaxun(m,t)HLg(Qt)
p1(t)
v 54
O e A RO A ER e (12

For the remaining terms in (11) we have

w2(1)

v 2
’ / Fa(@, )0Fun (2, t)dz| < §H8§un(a:,t)|]%2(9t) +;”fn(33=t)||%2(gt)a (13)
e1(t)

w2(t)

/ dpu(z, t)0%u(z, t)dx
e1(t)

2 v
< > [0utun, )y + 2102w ey, (14)

YOztn (0i(t), ) < V0xtin (@, )| () < E*V0xttn (@, )| 110) | O0tin (2, 1) | 20

= K*y|10zun(z,t)l|2(0y) [[100un (2, t)ll12(6) + 107un(2, 1)l 2(0))]

v K4’}/2 )
< S Oy + K2+ S5 Mo Ol =12 (19

Based on inequalities (11)-(15) we obtain:

10w (2, )3y + V1020 (2, 0122y < Crllfala )32 + Call ot D235, (16)

2 2714
where C = %’ Co="Y + 4 44 108K ot 4 K l,_i;g,y K

, since

Jun(z, )| La(a,) < 1/m<%§T VeO)lun(z,t)]| Lo,y < Callun (2, )| 10,y < Cs,

where

Cy= max /p(t)Cs.

1/n<t<T
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From inequality (16) similarly as in the proof of the first a priori estimate we obtain the
required estimate (8).
Now, let us proceed to the proof of the final a priori estimate. From equation (4) we have

19t (2, )| 2y < VI1ORum (1) |2y + 1 Dl 2

HlOzun (@, )l 2(m) + llun (@, ) 0zun (@, 1) || L2(0m).- (17)

According to (8) we need to estimate the last term in (17) only. Using the embedding
H () — L>®(£) and estimates (7) and (8) we have

T
||un(xat)a:vun(%t)n?:?mn) < Cs / ”un(wat)”?{l(Qt)Hawun(%t)”i%ﬂt)dt
1/n
< Céllun (@, )| Foo (1111 () |02t (25 ) |72 gry < Crll frnl, D)l[720pmy (18)

where C7 = K1 K9CgT, and K, Ko are the constants from (7) and (8).
Based on inequalities (17)-(18) we establish the estimate (9). This completes the proof
of Lemma 3. ]

4 Spectral problem and approximate solution

4.1 Spectral problem

To apply the Faedo-Galerkin approach, it is necessary to resolve the corresponding spectral
problem

—2Yy(z,t) = Mo (t)Yi(z,t), (z,1) € Q", k € Ny, (19)
Yi(e1(t),t) = Yi(p2(t), 1) = 0. (20)
The solution to this problem is sought in the form
Yi(z,t) = Ag(t) cos (A (t)z) + By (t) sin (Ag(t)x) . (21)
Using the conditions (20) from (21) we get:

{ Ap(t) cos (Ar(t)e1(t)) + B(t) sin (Ar(t)e1(2)) = 0, (22)
Ap(t) cos (Ar(t)g2(t)) + Bp(t) sin (A (t)g2(t)) = 0.

For the system (22) to admit a nontrivial solution, the following condition must hold:

cos (Ar(t)e1(t))  sin (Ax(t)pa(t))

sin (Ms()pa(t))  cos k()ga())]
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From where we obtain

sin (A (t)p(t)) =0, k € Ny,

hence
k
)\k(t) = m, k € Np.
From (22) we also obtain .
= ety
Substituting (24) into (21) and choosing
Bu(t) = V2 cos )\k(t)npl(t)’
p(t)

o Yi(z,t) = V2 sin (AR (t)(x — @1(t))), Ai(t) = <7Tk>2 keN

ka—mk lek—(p(t)a 0

4.2 Approximate solution

The following approximate solution

N N
:ch(t)Yj(x,t) (z,1/n) :Zc] 1/n)Yj(xz,1/n) =0,

is introduced and utilized to solve the problem (4)—(6):

p2(t)

/ [&gunN(x, t)dx + unN(x, t)@xunN(x, t) — V@iug(l’, t) + 3xunN(x, t)] Yi(z, t)dx

p1(t)
P2(t)
_ / Fol, )Y (2, 1) da,
e1(t)
uN(x,1/n) =0, z € Q1 /s
forallk=1,...,Nand t € [1/n,T].

Lemma 4. The problem (27)-(28) has a unique solution C(t) = {cj(t)}évzl.

(25)

(26)

(27)

(28)
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Proof. Given that the system of functions {Y(x,t)}ren, forms an orthonormal basis in L?($;)
for Ng ={0,1,2,...}, it follows that for any finite N:

p2(t) p2(t)

/ atujy(x,t)yk(x,t)d;p:ZN:C;(t) / Y, (s t) Vi (a, £)da
©1(t) =1 e1(t)
N pa(t)
#3060 [ Vi@ 0¥ e = &0 + S (e 1),
j=1

where for all k=1,... N
S1(t)ej(t) = (L(t) + L2(t) + I3(t)) ¢ (D),

w2(t)

7t v . ,
B0 =~ 55 Y eit) [ syl =~ o1()sin (ub)(e - p1(6)) do.
7=l e1(t)
, N
Bt 0 = (S (FU80 - w0) ) L
j=1
w2(t)

cos (A (t)(z = @1(t))) sin (Mg (8) (z — @1 (1)) dz,

e1(t)
27/ (1) N | 2(t) ‘
I3(t)cj(t) = — Iy > je;(t) / zcos (\j(t)(z — @1(1))) sin (A (1) (x — p1(2))) d.
7=l P1(t)

N
From (19) we have 02uY (z,t) = — 3 )\?(t)cj(t)Yj(x,t). Then, for all t € [1/n, T1,
j=1

w2(t) N w2(t)
- / 024 (2, )i, )z = S A2 (1)e (1) / Y, (2, ) Yi(a, t)dz = A(t)e; (8).
"0 = 0
For the nonlinear term we have
©2(t)
/ ul (z, 1) 0pul (2, )Yy (2, t)dx
©1(t)
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e2(t) N
/ ch VYi(z,t) Z em(t (z,8)Yi(z, t)dx = Sa(t)cpm(t).
»1(t) =1 m=l

For the last term we have

w2(t) N w2(t)
/ Ol (2, )Yy (2, t)d ch / Yj(x,t)Yi(z, t)de = S3(t)c;(t)
1(t) =1

® w1(t)

For j € N, the problem (27)-(28) can be reformulated as the following Cauchy problem for a
finite system of nonlinear ordinary differential equations:

cj(t) = (=S1(t) = vAT(t) = S3(1)) ¢;(t) = Sa()eum(t) + g5(1), ¢j(1/n) =0, (29)
where
pa(t)
50)= [ Sl 0o 0ds, jEN,
e1(t)
Since f(z,t) € L?(Q), it follows that gi(t) is a square-integrable function, and function
S (t) is well defined. Consequently, the Cauchy problem (29) has a unique solution on some
interval [1/n,T’], where T" < T. Moreover, due to the a priori estimates provided in Lemma
3 in Section 3, the solution C(t) can be extended up to the finite time T.
Thus, for any fixed finite N, the functions C(t) = {c¢;(t ) ", are determined as the

solution to the Cauchy problem (29). Along with these, the unlque approximate solution
ul (z,t) to problem (27)—(28) is obtained. This concludes the proof of Lemma 4. O

5 Solvatility of auxiliary problem

5.1 Proof of Theorem 2. Existence

By virtue of Lemma 3 we can extract weakly convergent subsequences from bounded sequences
{ul(z,t), Opul (z,t) N =1,2,...}:

ulN (z,t) = up(x,t) weakly in L?(1/n,T; H3(Q4)) N H(1/n, T; L* (%)), (30)

ulN (x,t) = u,(x,t) strongly in L?(1/n, T; L*(€%)) and a.e. in Q™. (31)

We introduce the new function w;(z,t) = ¢(t)Yj(x,t), where Yj(x,t) € HZ(Q:) and
Y(t) € CY([1/n,T)). Next, we multiply the identity (27) by () € C1([1/n,T]) and after
that we integrate the resulting expression with respect to t over the interval [1/n,T] for
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j=1,...,N and use the fact that the set of all linear combinations of {w;(z,t)} is dense in
L*(1/n,T; H3(Q)). Thus, we obtain:

T ¢2()
/ / [&tuflv(a:, t) +ul (z,t)0pul (z,t) — vO2ul (x,t) + Opul (x,t) — f(x, t)|w(z, t)dzdt = 0,
1/n @1 (t)
Vw(z,t) € L*(1/n, T; HE (). (32)

In the identity (32) we take the limit as N — oo. For the linear terms in equation (4), the
passage to the limit is performed using the relations (30) and (31). Regarding the nonlinear
term, as N — oo we arrive at the following result:

T 2(t)
/ [l (z,t) — up (z,1)]0pul (2, )w(zx, t) de dt
1/n @1 (t)
T p2(t) T w2(t)
+/ / U (2, 8)Opul (z, t)w(z, t) dz dt — / / Up (2, ) Opup (z, )w(x, t) dedt,  (33)
1/n @1 (t) 1/n ¢1(t)

since according to (30)—(31) there exists a limiting relationship

T e2(t)
/ / 0 (2, 8) — (@, )00 (2, Oy w(, ) da dt — 0.
n i)

Thus, by passing to the limit as N — oo in the identity (32), and taking into account the
limiting relation (33) along with the initial condition (28), we obtain:

T ¢2(b)
/ / [Oyun (2,t) + up (2, ) ptun (2, t) — V02U (2, ) + Opun(z,t) — f(z,t)] w(z, t)dzdt =0,
1/ne1(t)
Vw(z,t) € L*(1/n, T; H (), (34)
#2(1/n)
un(z,1/n)f(x)de =0, VO(x) € Lz(Ql/n). (35)
¢1(1/n)

Thus, from (34)-(35), it follows that the limiting function u,(x,t) satisfies equation (4)
along with the boundary and initial conditions (5)—(6).
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5.2 Proof of Theorem 2. Uniqueness

We suppose that the initial boundary value problem (4)—(6) has two distinct solutions, denoted
by u(l)(x,t) and ug) (z,t). Then, their difference, given by wu,(x,t) = ugll)(:r,t) - ug)(:c,t),

n

fulfills the following problem:

atun(l'a t) + un(l'a t)axugzl)(aTv t) + ug) (l’, t)azun(l'a t) - Va;%un(l'a t) + aﬂcun(‘rv t) =0, (36)

un(01(t),t) = un(p2(t),t) =0, t € (1/n,T), (37)
up(z,1/n) =0, € Qy/py. (38)
By Lemma 3, it follows that

uP(2,t) € L°(1/n, T; H' () N LA(1/n, T; HE (), k= 1,2. (39)

Consider equality

5 7 [un (@ O)llz2iq + v 10wun(z, )10, =
w2(t)

- / [un(x, H)Dpul (2, tyun (@, 1) + ul?) (2, ) Optin (, t)un (z, 1) | dr, (40)

e1(t)
derived by taking the scalar product of equation (36) with the function w,(z,t) in the space

L2(S).
From (39), we derive an estimate for the right-hand side of (40):

wa(t)
[lun(, ) POsull) (@, ) + uf?) (2, )stun (@, un(2, )| do

= / [—QU}L(m,t)un(x,t)axun(m,t)+ug)(aﬁ,t)(?xun(a:,t)un(x,t)} dx

1 2
<o [2!!u;1>(x,t)HLoo(l/n,T;mt» + [u® (2, )| o1 /n,T;(Qt))} (2, 8) 320,

v v
+§H3xun($at)H%2(Qt) = CSHUn(fE,t)H%Q(Qt) + 5\\3xun(x,t)|!i2(gt)7 (41)

where ) )
G =5 [2”ug)($,t)HLOO(l/n,T;(Qt)) + [|ul (2, t)HL‘X’(l/n,T;(Qz))}
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Using relation (40), we deduce:
d 2 2 2
2 lun (@ Oz, + v [10zun(z, )72, < Collulz, )12,y V€ @X/nT],  (42)
where Cg = 2Cg. From (42), by applying Gronwall’s inequality, we obtain:

”un(wat)H%;(Qt) = 0, Vte (1/7’L,T]

This implies that ne (x,t) = u'? (x,t) in L?(Q"), meaning the solution to the initial boundary

value problem (4)—(6) is unique. Hence, the uniqueness has been established, and Theorem 2
is proven.

6 Proof of the main result

6.1 Proof of Theorem1l. Existence

In the boundary value problems (4)-(6), we extend each element of the sequence {uy(z,?) :
(xz,t) € Q" n € N*} by zero to the entire domain Q. As a result, we obtain a bounded

P

sequence of functions {un(a:,t), n e N*} , from which a convergent subsequence can be ex-

tracted (retaining n as the index for this subsequence), i.e.

Up(x,t) = u(z,t) weakly in HS’I(Q), (43)

Un(x,t) = u(x,t) strongly in L%(Q). (44)

Then, based on (43)—(44), we can pass to the limit as n — oo in the following integral
identity for all ¥(x,t) € L*(Q)

/ [Gtun(x, t) 4 un (2, 1) Optin (1) — vOPupn (2, 1) 4+ Opun(z,t) — folz, t)} Y(x,t)dx dt —
Q

— / [0wu(z,t) + u(,t)0pu(z, t) — vOru(z,t) + pu(z,t) — f(2,t)] (2, t) dedt =0, (45)
Q

and u,(z,1/n) — 0, as n — oo. Thus, it has been shown that the boundary value problem
(1)—(2) possesses a solution u(zx,t) € Hg’l(Q), as defined by the integral identity (45). This
proves the existence of a solution, thereby confirming Theorem 1.
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6.2 Proof of Theorem 1. Uniqueness

has two distinct solutions, denoted u) (z, t)

Suppose that the boundary value problem (1)—(2)
= uM(z,t) — u®(z,t) will fulfill the following

and u®(x,t). Then, their difference u(z,t)
problem:

du(z,t) + u(z, )0puV (z, ) + u® (2, 0)dpu(z, t) — v&?u(z, t) + pu(z, t) =0, (46)
u(cpl (t))t) = U(QOQ(t)’ t) =0, te (OvT)' (47)

By similar reasoning as in Lemma 3, the following inequality can be established:
1™ (2, )| L0 31 00)) < M = Kallf (2,0l 2(0), k= 1,2. (48)

Consider the equality

1d
5 llul@, 720, + v 10su(a, )72, =

2di
@2(t)

- / []u(x,t)\anu(l)(x,t)+u(Q)(x,t)axu(x,t)u(x,t)] dz, (49)
e1(t)

which is obtained by multiplying the equation (46) by function u(z,t) scalarly in L?(£2;).
From (48), we obtain an estimate for the right side of (49)

p2(t)
/ [[u(er ) P0,u) . 2) + u® (2, )0, Hyu, 1)) do
e1(t)
v
< Cioflu(z, t)||%2(nt) + §||axu(x,t)|liz(9t), (50)
where A2
1 2.9
5 |:2Hu(1) (x7t>HL°°(O,T; (Qt)) + Hu(2) (xvt)HLoo(QT;(Qt)) S 21/ = 0107
and M is the constant from (48).
Based on relations (49)—(50) we obtain
d
EHU(JUJ)H%%QQ + v 0pu(, 1)||72(0,) < Crillu(@, )72y, Yt € (0,T], (51)

where C1; = 2C1p. From (51), applying the Gronwall inequality, we obtain that
lu(z, )72,y =0, Ve (0,T).

This implies that u(V(z,t) = u® (z,t) in L?(Q), i.e. solution to the boundary value prob-
lem (1)-(2) is unique. Thus, we have proved the main result of the work, namely, Theorem 1.
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7 Conclusion

In this work, we studied a Dirichlet problem for the Burgers equation in a domain with moving
boundaries that degenerates at the initial moment. An orthonormal basis suitable for domains
with moving boundaries was constructed. Uniform a priori estimates were obtained, based
on which theorems on the unique solvability of the considered problem were proven using
methods of functional analysis.
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Capwibait T.A., Epramues M.Y., Kakceibait bl.LK. TYTKbBIP BIOPTEPC TEHJIEYI
YIIIH KOMBIJIFAH JUPUXJIE ECEBIHIH HIEIIIM/ILIITT TYPAJIBI

Kywmpicta 6i3 yakbITTBIH 0ACTANKBl ME3ETIHIE KOUBLIMAJIBI XKOHE IEKAPAIAPHI KO3FaI-
MaJjel obsibicTa broprepe Tengeyi yimia xofteuiran Jlupuxiie ecebin 3eprreiiMis. 3epTTeyiiH
merisri oaici — Tapexkwn omici bomranapkTaH, 613 MeKapa apbl KO3raaMasbl 0b6JBICTAD YIiH
KOJIJaHyFa OOJATHLIH OPTOHOPMAJAHFAH 0a3UC KYpPbLIaAbl. BIpKaILIITEI ampuop/bl Harasia-
yJIap aJBIHBIT, OJaP/IbIH HETi3iHAe KapaCTLIPLLIBIIT OTHIPFAH €CenTiH OIpMOHI ImermiMimiir
TypaJibl Teopemasap (pyHKIIMOHAJIBIK TaLIay 9aicTepl KoMerimen jaJgesnaesi. TyTkbip Byp-
repc TeHJIeyl CBI3BIKTBI eMeC XKylesiepiH 1prei acrneKTiIepiH 3epTTey VIIH KeH1IIeTLImeH
yiri petiage Kpr3mer erei. O Ta3a TEOPUSIIBIK CBI3BIKTBI €MeC TeHeyaep (MbICAJIbl, GYPBIC
Byprepc rengeyi) men Hasbe-CToke TeH/ey1€pl CUSKTBI Kyp/e/l xKyHesep apachiHaarbl aJi-
MAKTHIKTHI 2KOATBI, OYJT OHBI MATEMaTUKAJIBIK, YKOHE (DUBUKAJIBIK, 3€PTTEYAepAe KYHIbI KypaJ
eTesl.

Tyiiiu ce3saep: Broprepc Terseyi, anpuopibl baraiayiap, LamepkuH 9mic.

Capuwibaiit T.A., Epragues M.T., 2Kaxkceibait bl.K. O PASPEIIINMOCTU 3AJTAYN JIU-
PUXJIE JIJId BA3KOI'O YPABHEHU A BIOPTEPCA

B pabore mamu uccienyercs ogua 3amada lupuxsie qig ypasuenus: broprepca B 001acTu
C MOABUKHBIMU TPAHUIIAMHK, KOTOPas BLIPOKIAETCS B HAYAJIBHBIN MOMEHT BpeMenu. (OCHOB-
HBIM METOJIOM HWCCJIENOBAHUA SBJsIeTCa MeTon l'amepkuHa, [ TPUMEHEeHNsT KOTOPOTO HAMM
B paboTe CTPOUTCS OPTOHOPMHPOBAHHBIN 6a3MC, IPUMEHHMBIH g 00JacTeil ¢ MOJBUZKHBI-
MU I'DaHUAIIAMH. HOJTyLIeHbI PaBHOMEPHbIEC allPUOPHBIC OOCHKMW Hd OCHOBE KOTOPBIX METOddaMMN
GYHKITMOHAJIHHOTO aHAIN3a JOKA3AHLI TEOPEMbl OJHO3HATHON Pa3pelnMOCTH PacCMaTPUBaA-
eMoil 3amaun. Bsi3koe ypaBHenme Brooprepca CIy:KHT YIOPOINEHHONH MOIEIBIO IJIsT M3YIEHNS
dyHIaMEHTAJIBHBIX ACMEKTOB HEJIMHEHHBIX cucTeM. OHO 3amo/iHsaeT Tpobes MeX Iy 9hCTO Teo-
pPETUYECKUMH HeJUHEHHBIMI yDaBHEHUSIME (TaKUMU KaK HEBsI3Koe ypaBHeHue Broprepca) u
BoJ1ee CIOKHBIMY CUCTEMAaMHI, TAKMME Kak ypaBHenus Hasbe-CToKca, 9TO 1e1aeT ero meHHbIM
MHCTPYMEHTOM B MaTEMaTHIECKUX M (DUBNIECKHX HUCCICTOBAHMIX.

Kuarouesbie cioBa: ypasuenne Bioprepca, anpuopubie orenku, meros [aieprkuHa.
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Abstract. Alternative algebras are vital for studying and modeling systems that deviate from strict
associativity but maintain enough structure to be useful. Indeed, alternative algebras generalize asso-
ciative algebras by relaxing the strict associativity condition. Alternative algebras naturally include the
octonions, which are a key example of a non-associative division algebra. The octonions are part of
the Cayley-Dickson construction and play a critical role in geometry, topology, and theoretical physics,
especially in string theory and exceptional Lie groups. The origin of alternative algebras lies in the
historical exploration of division algebras and their applications extend to various mathematical and
physical disciplines, especially in understanding non-associative algebraic structures. In this paper, we
consider free alternative algebra with the additional identity > = 0. For motivation, we refer to the
dual operad of the alternative operad. Also, we obtain pre-Lie algebra with the identity > = 0 from

binary perm algebra. Finally, we consider assosymmetric algebra with identity z* = 0.

Keywords. alternative algebra, pre-Lie algebra, assosymmetric algebra, polynomial identities.

1 Introduction

An algebra is called alternative if it satisfies the following identities:
(ab)e — a(be) = —(ac)b + a(cb), (1)

(ab)e — a(bc) = —(ba)c + b(ac). (2)

A natural source of alternative algebras is Artin’s theorem, which states that its every two-
generated subalgebra of alternative algebra is associative [11]. Let us demonstrate some
works related to the subvarieties of the variety of alternative algebras. In [9], the authors

2010 Mathematics Subject Classification: 17A30, 17A50, 17D05.

Funding: This research is funded by the Science Committee of the Ministry of Science and Higher Edu-
cation of the Republic of Kazakhstan (Grant No. AP26193761).

DOLI: https://doi.org/10.70474/41eaqa09

(©) 2024 Kazakh Mathematical Journal. All right reserved.



38 Yerlan K. Duisenbay, Bauyrzhan K. Sartayev, Alpamys A. Tekebay

constructed a basis of the free alternative algebra with identity [a, b][c, d] = 0 and proved that
every metabelian Malcev algebra can be embedded into appropriate alternative algebra under
commutator. In [5], the authors considered a variety of alternative algebras with the identity

(ab)e + (cb)a = (ac)b + (ca)b, (3)

which coincides with a variety of binary perm algebras. There is given a basis of the free
alternative algebra with identity (3) and described a complete list of identities of algebras
that appear under commutator and anti-commutator.

The variety of alternative algebras is a natural generalization of the variety of associative
algebras. On the other side, the dual operad of the alternative operad is an associative operad
with additional identity z3 = 0. So, we obtain

Alt' = As + {23 = 0}.

Also, we obtain the following trivial result which immediately follows from the definitions
given above:

Theorem 1. Let Alts be a variety of alternative algebras defined by identity x> = 0. Then
every two-generated algebra from Altz lies in Alt', i.e., Alt + {z3 =0} = Alt!2.

All described motivations can be illustrated as inclusions of the varieties as follows:

As O As+ {2® =0} = Alt'
N N N
Alt D Alt + {23 = 0} = Alt',

Also, we consider Koszul dual operad 732!, where P, is a variety of binary perm algebra,
i.e., it is an alternative operad with additional identity (3). It turns out that P,' is a variety of
pre-Lie algebras with two additional independent identities, where one of them is 2% = 0. In
addition, it is observed the fact that an algebra from 772! is a Lie algebra with an additional
independent identity of degree 5. The situation looks like for the Novikov algebras under
commutator [3]. For Novikov algebras, there occurs a standard identity of degree 5

Z (_1)0['7:0(1)7 [x0(2)7 [‘TU(IS)? [CEU(4),$5HH =0.

oc€Sy

Finally, we consider assosymmetric algebra with identities generated by 1-dimensional
invariant basis vectors which are described in [7|. These identities are

> (D730 (To@)To@) and Y 200)(To@)To)-

o€ES3 oS3
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Indeed, considered alternative and pre-Lie algebras with identity 2® = 0 is equivalent to
the alternative and pre-Lie algebras with identity generated by 1-dimensional invariant basis
vectors of identities space of degree 3, see [7|. For more details on assosymmetric and pre-Lie

algebras, see [1, 6, 8, 10].
We consider all algebras over a field K of characteristic 0.

2 Some properties of algebras with identity x> = 0

Definition 2. An alternative algebra with additional identity 2% = 0 is called a 3-nil alter-
native algebra. We denote by Alts and Alt3(X) the variety of 3-nil alternative algebras and

free algebra if the variety Alts, respectively.
In characteristic 0, the identity 2 = 0 comes to

(zy)z + (yr)z + (22)y + (z2)y + (y2)z + (2y)z = 0.
By using (1) and (2), the identity (4) can be rewritten as

z(yz) + z(zy) + y(zz) + y(zx) + 2(zy) + z(yz) = 0.
Both identities that are obtained from z3 = 0 give

{{a,b},c} + {{b,c},a} + {{c,a},b} = 0.
Proposition 3. The polarization of 3-nil alternative algebra gives
[, {y, 2} = {[z, y], 2} + {[z, 2], y}

and

{{x,y},z} = 1/3([1’, [y7 ZH - [[x,z],y])

Proof. It can be stated by straightforward calculations.

O

Indeed, the identity (4) and its consequence in alternative algebra can be rewritten as

> (To(1)To@)To(E =0

oES3

and

Z To(1) (xo(2)$o(3)) =0.

oES3

These identities correspond to the 1-dimensional invariant basis vectors.

Theorem 4. An operad Altz is self-dual.
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Proof. Firstly, let us fix a multilinear basis of algebra Alts of degree 3. That is
c(ba) = —(ac)b + (cb)a + a(ch),
c(ab) = (ca)b+ (ac)b — a(cb),
b(ca) = (ac)b+ (bc)a — a(cb),
(ab)c = —(ac)b+ a(cb) + a(bc),
b(ac) = —(ca)b — (ac)b — (¢b)a — (bc)a — a(be)

~

and
(ba)c = —(ca)b — (cb)a — (bc)a — a(chb) — a(be).

The Lie-admissibility condition for S ® U gives the defining identities of the operad Alté,
where S is a 3-nil alternative algebra. Then

[[a ®@u,b®v],c®w] = (ab)e ® (uv)w — (ba)c @ (vu)w — c¢(ab) @ w(uv) + ¢(ba) @ w(vu) =
(—(ac)b+ a(cb) + a(bc)) @ (uv)w — (—(ca)b — (cb)a — (bc)a — a(cb) — a(be)) @ (vu)w
— ((ca)b + (ac)b — a(cb)) ® w(uv) + (—(ac)b+ (cb)a + a(ch)) @ w(vu).

Also, we obtain

[b@v,c®@w],a®u] = (bc)a® (vw)u — (cb)a ® (wv)u — a(be) @ u(vw) + a(ch) @ u(wv).

and

[c®w,a®u],b®v] = (ca)b® (wu)v — (ac)b® (vw)v — b(ca) ® v(wu) + blac) @ v(uw) =
(ca)b @ (wu)v — (ac)b @ (uw)v — ((ac)b + (bc)a — a(cb)) @ v(wu)
+ (—(ca)b — (ac)b — (cb)a — (bc)a — a(be)) @ v(uw).

Calculating the sum and collecting the same basis monomials, we obtain

[[a®u,b®v],c®@w|+[[bv, c®w] a®@u]+ [[c®@w,a®ul,b®v] =
(ac)b @ (—(uv)w — w(uv) — wvu) — (uw)v — v(wu) — v(uw))
+ a(eb) @ (wv)w + (vu)w + w(uww) + w(vu) + u(wv) + v(wu))
+ a(be) @ ((wv)w + (vu)w — u(vw) — v(uw)) + (ca)b @ ((vu)w — w(uv) + (wu)v — v(uw))
+(eb)a® ((vu)w +w(vu) — (wv)u —v(uw)) + (be)a® ((vu)w + (vw)u — v(wu) — v(uw)) = 0.

From the right sides of the tensors, we obtain the identities (1), (2) and (4) which means
that the operad Alts is self-dual. O
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We denote by Py and Po(X) the variety of binary perm algebras and free binary perm
algebra. Let us calculate the dual operad of binary perm algebra 732!. As above, we first fix
the multilinear basis of binary perm algebra of degree 3. That is

(be)a = (ba)c — (ac)b + (ab)c,
(cb)a = (ca)b+ (ac)b — (ab)
a(be) = c(ab) — (ca)b+ (ab)c,
a(ch) = —c(ab) + ( + (ac)b,
b(ac) = —c(ab) + (ca)b + (ba)
c(ba) = —c(ab) + 2(ca)b + (ac)b — (ab)c

¢,

+ (ca)b
+

Cy

and
b(ca) = c(ab) — (ca)b + (ba)c — (ac)b + (ab)c.

Performing similar calculations as above, we obtain

[[a®@u,b@v],c@w]+[[bRv,c@w],a®@u]+ [[c®w,a®ul,b®v] =
(ab)c @ (uv)w — (ba)c @ (vu)w — c(ab) ® w(uv) + c¢(ba) @ w(vu)
+ (bc)a ® (vw)u — (cb)a ® (wv)u — a(be) ® u(vw) + a(ch) ® u(wv)
+ (ca)b @ (wu)v — (ac)b @ (uvw)v — b(ca) ® v(wu) + blac) @ v(uw) =
(ab)e @ (uwv)w — (ba)e ®@ (vu)w — c(ab) ® w(uv) 4+ (—c(ab) + 2(ca)b + (ac)b — (ab)c) @ w(vu)

+ ((ba)c — (ac)b + (ab)c) @ (vw)u — ((ca)b + (ac)b — (ab)c) @ (wv)u

(ab)c) )+ (—c(ab)+(ca)b+(ac)b) @u(wv)+(ca)b@ (wu)v—(ac)b@ (uw)v
— (c(ab) — (ca)b + (ba)c — (ac)b+ (ab)c) @ v(wu) + (—c(ab) + (ca)b + (ba)c) @ v(vw) =

(ab)ec @ ((uwv)w — w(vu) + (vw)u + (wv)u ) —

+ (ba)e @ (—(vu)w + (vw)u — v(wu) + v(uw))
+ c(ab) @ (—w(uv) — wvu) — u(vw) — u(wv) — v(wu) — v(uw))
+ (ca)b @ (2w(vu) — (wv)u + u(vw) + w(wv) + (wu)v + v(wu) + v(uw))
(ac)b @ (w(vu) — (vw)u — (wv)u + u(wv) — (vw)v + v(wu) + v(vw)) = 0.

)
— u(vw) — v(wu)

~—

From all calculations, we obtain the following result:

Theorem 5. The following identities define an operad which corresponds to 772!:

(v,w,u) = (v,u,w),
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(u,w,v) + (w,v,u) + (v, w,u) =0

and
w(uv) + w(vu) + u(vw) + u(wv) + v(wu) + v(vw) = 0,

where (v, w,u) stands for associator.
Theorem 6. The operad Py' is not Koszul.

Proof. Calculating the dimension of the operad 732! by means of the package [2]|, we get the
following result:

n 1 2 3 4 5
dim(P,'(n)) [1 2 7 26 67
According to the obtained table and [5], the first few terms of the Hilbert series of the operads

732! and Py are
H(t) = —t+t* — 5t3/6 + 6t" /24 — 5t° /120 + O(t°)

and
H'(t) = —t +t2 = 7t%/6 + 26t* /24 — 67t° /120 4+ O(t%)
Thus,
H(H'(t)) =t + 31t°/60 + O(t°) # ¢.
By [4], the operad P,' is not Koszul. O

Proposition 7. The polarization of 772! algebra gives
[[CL, b]v C] + [[bv c]’ a] + [[C, a]7 b] =0,
{{a7 b}7 C} + {{bv C}’ CL} + {{C’ CL}, b} =0,
[{av b}vc] + [{b’ 0}7 a] + [{C’ a}’ b] =0

and
{[b;c],a} = {{a, b}, c} +{[c, al, b} + [{a, b}, c] + 1/3[[b, ], a] —1/3][[c, a], b].
Proof. It can be stated by straightforward calculations. ]

The next natural operad that we have to consider is an assosymmetric operad with identity
3
z° = 0.

Definition 8. An algebra is called a 3-nil assosymmetric if it satisfies the following identities:
(z,y,2) = (,2,9),
(#,9,2) = (y, 7, 2)

and
z(yz) + z(zy) + y(zz) + y(zz) + 2(zy) + z(yx) = 0.
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In other words, this is an assosymmetric algebra with identity generated by a 1-dimensional
invariant basis vector
D o) (T2 To(s):

o€ESs

Remark 9. A 3-nil assosymmetric algebra does not satisfy the identity (4) under anti-commu-
tator.

Let us calculate S ® U, where S is a 3-nil assosymmetric algebra.

la@u,b@v],c@w]+[b@v,c@w],a®@u]+ [[c®w,a®@ul,b®@v] =
(ab)e ® (uwv)w — (ba)c @ (vu)w — c(ab) ® w(uv) + c¢(ba) & w( )
+ (—c(ba) — 5e(ab) + 4(ca)b — (ba)e — (ac)b — (a
—(e(ba)—c(ab)+(ca)b) @ (wv)u—(c(ab) — (ca)b+(ab)c) @u(vw)+ (c(ab (ca)b—l—(ac)b)@u(wv)
+ (ca)b @ (wu)v — (ac)b @ (uvw)v — (—c(ba) — 4c(ab) + 3(ca)b — (ba)c — (ac)b — (ab)c) @ v(wu)
+ (¢(ab) — (ca)b+ (ba)c) ® v(uw) =
(ab)c ® ((uv)w — (vw)u — u(vw) + v(wu)) + (ba)c ® (—(vu)w — (vw)u + v(wu) + v(vw))
+ c(ab) ® (—w(uv) — 5(vw)u + (wv)u — u(vw) + u(wv) — 4v(wu) + v(uw))
+ c(ba) ® (w(vu) — (vw)u — (wv)u + v(wu))
+ (ca)b @ (4(vw)u — (wv)u + u(vw) — u(wv) + (wu)v — 3v(wu) — v(uw))
+ (ac)b @ (—(vw)u + u(wv) — (vw)v + v(wu)).

The above calculations give the following result:

Theorem 10. The dual operad of 3-nil assosymmetric operad is an alternative operad with
the additional identity:

(w)w — (vu)w — (uw)v + (wu)v + (vw)u — (wv)u = 0.
So, this is an alternative algebra with the additional identity generated by a 1-dimensional

invariant basis vector
D (1) (1)) Ta(s)-

oES3

Theorem 11. The operad governed by the variety of 3-nil assosymmetric algebras is not
Koszul.

Proof. Calculating the dimension of these operads by means of the package [2], the first few
terms of the Hilbert series of these operads are

H(t) = —t +t* — 3 4+ 13t* /24 — 15t° /120 + O(%)
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and
H'(t) = —t +t2 — 3 +13t1/24 — 97 /120 + O(19).
Thus,
H(H'(t)) =t + 19t°/20 + O(t%) # t.
By [4], such operad is not Koszul. O

Let us define an assosymmetric algebra with the additional identity which is generated
by the 1-dimensional invariant basis vector

> (1) (1)) Ta():

oES3

Such algebra also satisfies another identity

Z (_1)0930(1) (1130(2)1‘0(3)).

gES3

Theorem 12. An assosymmetric operad with identity 3, g, (—1)7 (To(1)Ts(2))To(3) 18 Self-
dual.

Proof. As before

[a®@u,bRv],c@w+[[b@v,cR@w],a@u]+ [[c@w,a@ul,b®v] =
(ab)e @ (uv)w — (ba)e @ (vu)w — c(ab) @ w(uv) + c¢(ba) @ w(vu)
+ (¢(ba) — c¢(ab) + (ba)c + (ac)b — (ab)c) @ (vw)u
—(e(ba) —c(ab)+(ca)b) @ (wv)u—(c(ab) —(ca)b+(ab)c) @u(vw) + (c(ab) — (ca)b+ (ac)b) @u(wwv)
+ (ca)b ® (wu)v — (ac)b ® (uvw)v
— (¢(ba) — (ca)b+ (ba)c + (ac)b — (ab)c) ® v(wu) + (c(ab) — (ca)b+ (ba)c) ® v(uw) =
(ab)e ® ((wv)w — (vw)u — u(vw) + v(wu)) + (ba)c ® (—(vu)w + (vw)u — v(wu) + v(uw))
+ c(ab) @ (—w(uv) — (vw)u + (wv)u — u(vw) + u(wv) + v(uw))
+ ¢(ba) @ (w(vu) + (vw)u — (wv)u — v(wu)) + (ac)b ® ((vw)u + u(wv) — (vw)v — v(wu))
+ (ca)b) @ (—(wv)u + u(vw) — u(wv) + (wu)v + v(wu) — v(uw)).

w
w

The right parts of the tensors are equal to 0 if and only if the given operad is self-dual. [

Theorem 13. The operad governed by the variety of assosymmetric algebras with identity

Z (=17 (20(1)T0(2)) To(3)

o€ES3

18 not Koszul.
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Proof. Calculating the dimension of this operad by means of the package [2], the first few
terms of the Hilbert series of this operad is

H(t) = H'(t) = —t + * — 3 + 14t /24 — 12¢° /120 + O(1%)
Thus,
H(H'(t)) =t + 7t°/10 + O(1%) # t.

As before, such operad is not Koszul. O

The last remaining algebra is assosymmetric algebra which admits the identity

{z v} 2h + Hy, 2h b + {{z 2}, 91 =0

under anti-commutator. For such an operad, let us calculate its Koszul dual operad:

[[a®@u,b@v],c@w|+[[bRv,c@w],a®u]+ [[c®w,a®ul,bRv] =
(ab)e ® (uv)w — (ba)c @ (vu)w — ¢(ab) ® w(uv) + ¢(ba) ® w(vu)
+ (—c(ba) — 2¢(ab) + (ca)b — (ba)c — (ac)b — (ab)c) @ (vw)u — (c(ba) — c(ab) + (ca)b) @ (wv)u
— (c(ab) — (ca)b+ (ab)c) ® u(vw) + (c(ab) — (ca)b + (ac)b) @ u(wv)
+ (ca)b ®@ (wu)v — (ac)b ® (vw)v

— (—c(ba) — e(ab) — (ba)e — (ac)b — (ab)e) ® v(ww) + (c(ab) — (ca)b + (ba)

(ab)e @ ((uo)w — (vw)u — u(ww) +v(wn)) + (ba)e ® (—(vu)w — (vw)u + v(w) +
c(ab) ® (—w(uv) — 2(vw)u + (wv)u — u(vw) + u(wv) + v(wu) + v(vw))
+ efba) @ (w(ve) — (vw)u — (woyu + v(wn)) + (ac)h @ (—(vw)u + u(wo) — (ww)o + v(ww))
+ (ca)b @ ((vw)u — (wv)u + u(vw) — u(wv) + (wu)v — v(uw)).

We obtain an alternative operad with the identity

¢) @ v(uw) =
v(uw))

wu

uw

(vw)u — (wv)u + (wu)v — u(wv) — v(uw) + u(vw) = 0.
Let us check Koszulness condition for the last considered operad:

Theorem 14. An assosymmetric operad with identity {{z,y}, z}+{{y, 2z}, 2} +{{z,2},y} =0
s not Koszul.

Proof. Calculating the dimension of these operads by means of the package [2], the first few
terms of the Hilbert series of these operads are

H(t) = —t+t* — > + 12t /24 — 15¢° /120 4+ O(¢°)

and
H'(t) = —t + > — 3 + 12t*/24 — 9t5 /120 + O(t%)
Thus,
H(H'(t)) =t +6t°/5+0(t%) # .
So, such operad is not Koszul. O
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3 Some identities under commutator

For A(X), we define commutator algebra A7) (X) which is obtained from A(X) under the

operation

[z,y] = 2y — ya.
Analogically, we define anti-commutator algebra A (X) under the operation {z,y} = zy +
Y.

Theorem 15. An algebra 732! (_)<X> satisfies the following identities:

[[a,b],c] + [[ba C]7a] + [[Cv a’]>b] =0,
%W%%%dﬂ+Whﬁﬂﬂd+mhﬂﬂdﬂ+mhﬂﬂﬂ&D
+ [llla, ¢, b], e, d] + [[[la, ], d] €], b] + [[[[a, €], b], ], d] + [[[[a €], d], ], b] = 0,

and

%MW%%&@ [[lla, 0], d], c], €] + [[lla, ], b], d], €]
[[lla, ], d], 0], €] + [[[la, d], 0], ], €] + [[[[a, d], ], b], €]) =
[[lla, 0], ], €], d] + [[[la, b], d], €], ] + [[[[a, ], bl €], d]+

[[lla, ], d], ], b] + [[[la, d], 0], €], ] + [[[[a, d], ], €], b].

+
+

Proof. The Jacobi identity follows from the fact that every pre-Lie algebra under commutator
is a Lie. The identities of degree 5 can be obtained using means of the package [2]. Since both
identities are written as a sum of basis monomials of the free Lie algebra, they are independent
of anti-commutative and Jacobi identities. O

Theorem 16. An algebra Alt(_)<X> satisfies the following identities:
[[a, d], [b,d]] = [[[a, 0], ], d] + [[[b, ], d], a] + [[[¢, d], a], b] + [[[d a], ], c]

and

[[{[a, b], d], €], c] + [[[la, bl €], d], ¢] + [[[[a, c], ], e], b] + [[[[a, c], €], d], b]
- [H[a’d]’bhc}ve} - [[Hav d]7C]vb]a€] - [[[[CL, 6]7b]7c]’d] - [H[ave]vc]ab]vd] =0.

Proof. The first identity corresponds to the Malcev identity. The identity of degree 5 can be
obtained using means of the package [2]. O
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4 Some identities under anti-commutator

Theorem 17. An algebra Alt:(;) (X) satisfies the following identities:
{a,{b,c}} +{{a, c}, b} + {{a,b},c} =0, (6)
{{a,d}, {b,c}} = —{{a, c}, {b,d}} + {{a.{c,d}}, b} + {a,{b,{c,d}}}, (7)

{{{a,d}, c}, 0} + {{{a, ¢}, d}, 0} + {{{a, d}, b}, c} + {{{a, ¢}, b}, d}
+{{{a,b},d}, ¢} + {{{a,b},¢},d} =0, (8)

—{{{{a, e}, ¢} d}, 0} + {{{{a, ¢}, d}, e}, 0} + {{{{a, d}, e}, b}, c} + {{{{a, c}, e}, b}, d}
+ {{{a, e}, 0}, ¢}, dy — {{{{a, d}, b}, c}, e} + 2{{{{a, c}, b}, e}, d} — {{{{a, b}, d}, e}, c}
- 2{{{{@, b}7 d}7 C}7 6} - {{{{av b}7c}7 d}7 6} =0, (9)

- {{{a,d}, ¢}, e}, 0} = {{{{a, ¢}, d}, e}, 0} = {{{{a, d}, e}, b}, ¢} — {{{{a, c}, e}, b}, d}
—{{{a,e}; b}, d}, ¢f = {{{{a, d}, 0}, e}, ¢f = {{{{a, e}, b}, ¢}, d} + {{{{a, d}, b}, ¢}, e}
- {{{a, ¢}, b}, e}, d} + {{{{a, c}, b}, d}, e} + {{{{a, b}, d}, e}, e} + 2{{{{a, b}, d}, ¢}, ¢}
+{{{a, b}, c} e}, d} + 2{{{{a, b}, c}, d}, e} = 0. (10)
Proof. The identity (6) is taken from (5). Other identities can be obtained using means of
the package [2].

Proposition 18. The identities (7), (8), (9) and (10) are consequence of commutative iden-
tity and (6).

We use the identity (6) in two different ways on monomial {{{{a,b},c},d} as follows:

{{{{a, b}, ¢} dy =9 —{{{a, c},b}, &} = {{a, {b,c}},d} =© {{{a, c},d},0} + {{a, ¢}, {b,d}}
+{a, {{b, ¢} d} + {{a,d}, {b,c}} =9 ~{{{a,d},c}, b} — {{a, {c,d}}, 0} + {{a, c}, {b,d}}
+{{a,d}, {b,c}} —{a, {{b,d}, c}} — {a, {b,{c,d}}},

{{{{a. b}, ¢} dy =9 —{{{a,b},d}, ¢} — {{a, b}, {e.d}} = {{{a,b},d},c} + {{a, {c,d}}, b}
+{a,{b, {e,d}}} = —{{{a,d}, ¢}, b} — {{a,d}, {b,c}} — {{a. c}, {b.d}} — {a, {{b,d},c}}

+{{a,{c,d}}, 0} +{a,{b,{c,d}}}.

By equating and collecting similar monomials, we get

{{av d}> {bv C}} + {{CL, C}v {b7 d}} - {{aa {C7 d}}7 b} - {a7 {bv {C’ d}}} = 07
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which correspond to (7).

To find the next identity, we use the previously obtained identities:

{a, {b,{c,d}}} =9 —{a, {{b,d}. c}} — {a. {{b,c}, d}} =9 {{a,c}, {b,d}} + {{a, {b,d}}, c}
+ {{av d}’ {bv C}} + {{a7 {bv C}}’ d} :(6) *{{{a’ C}v d}a b} - {{{a7c}’ b}7d} - {{{av d}v b}v C}
- {{{a’ b}v d}’ C} - {{{CL, d}’ C}v b} - {{{av d}7 b}v C} - {{{CL,C}, b}’d} - {{{av b}a C}v d}’

{av {b’ {C, d}}} = {{a? {Cv d}}7 b} - {{av b}’ {Cv d}} = {{{av d}7 C}’ b}
+ {{{a, ¢}, d}, b} + {{{a, b}, d}, ¢} + {{{a, b}, c}, d}.

By equalizing them, we obtain the identity (8). In the same way, we obtain the remained
identities. More explicitly, there identity (9) can be prove as follows:

{{{aad}aCL {b’ 6}} = _{{{{av d}vc}a€}7b}_{{{{av d}vc}’b}7e} =® _{{{{avd}7c}ve}’b}
+{{{a, ¢}, d}, b}, ef + {{{{a,d}, b}, e} ef + {{{{a, ¢}, b}, d}, e} + {{{{a, b}, d}, c}, e}
+{{{{a,}, ¢}, d}, e},

{t{a,d},c} {b,e}} = —{{{a,c}, d}, {b,e}} — {{{a,d}, {b,e}}, } — {{{a, c}, {b,e}},d}
—{{{a. {be}} d}, e} — {{{a. {b,e}}, ¢} d} =9 {{{{a, e}, d}, e}, 0} + {{{{a, c},d}, b}, €}
+{{{a,d}, e}, b}, cf + {{{{a, d}s e}, b}, cf + {{{{a, e}, b}, ¢}, d} + {{{{a, b}, e}, ¢}, d}
+{{{a,e}, 0}, d}, e + {{{{a, 0}, e}, d}, e} + {{{{a, ¢}, e}, b}, d} + {{{{a, ¢}, b}, e}, d}
= {{{a,c}, d}, e}, b} + {{{{a,c}, d}. b} e} + {{{{a. d}, e}, b}, ¢} + {{{{a, d}, e}, 0}, ¢}
+{{{a,e}, 0}, ¢}, d} + {{{{a, b}, e}, ¢}, d} + {{{{a, e}, b}, d}, ¢} — {{{{a, b}, d}, e}, c}
—{{{a,b},e}s et d} = {{{{a, b}, d}, ¢}, e} = {{{{a, b}, ¢}, e}, d} = {{{{a, D}, ¢}, d}, e}

+{{{{a, ¢}, e}, b}, d} + {{{{a, ¢}, b}, e}, d}.

As before, we equalize them. Reducing the same monomials, we obtain (9).

For the last identity, we use previous identities to the monomial {{{a,e},c},{b,d}} in
two different ways as follows:

{{{av 6},6}, {b7 d}} =) _{{{{av e},c},d},b}—{{{{a, 6},0},b},d} =® _{{{{ave}vc}7d}7b}
+ {{{{a, e} e}, b}, d} + {{{{a, e}, b}, d}, ¢} + {{{{a, c}, b}, e}, d} + {{{{a, b}, €}, ¢}, d}
+{{{{a, 0}, ¢}, e}, d},

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 37-51



3-nil alternative, pre-Lie, and assosymmetric operads 49

{{a,e} e}, (b, d}} = —{{{a,c}, e}, (b, d}} — {{{a, e}, {b,¢}},d} — {{{a, c}, {b,d}} e}
—{{{a, {b.d}} e} e} — {{{a. {b,d}} e} e} =®) ({{{a,c}, e}, 0}, d} + {{{{a, c} e}, d}, b}
+{{{a, e}, d}, b}, e + {{{{a, e}, b}, df, e + {{{{a, ¢}, d}, b} e + {{{{a, ¢}, b}, d} e}
+{{{a,d}, b}, e}, cf + {{{{a, b}, d}, e}, ¢} + {{{{a, d}, b}, ¢}, ef + {{{{a, b}, d}, ¢}, e}
=0 —{{{{a,c},d}, e}, 0} — {{{{a, c}, e}, b}, &y — {{{{a, c},d}, b} e} — {{{{a. c}, b} e}, d}
—{{{{a,c}, b}, d}, e} + {{{{a, c} e}, b}, d) = {{{{a, d}, e}, b}, ¢} — {{{{a, e}, b}, d}, c}
—{{{a,d}, b}, e}, ¢} = {{{{a, b}, d}, e}, e + {{{{a, e}, b}, d}, cf + {{{{a, ¢}, d}, b}, e}
+{{{{a, ¢}, b}, d}, e} + {{{{a,d}, b}, e}, ¢} + {{{{a, 0}, d}, e}, ¢} + {{{{a, b}, e}, ¢}, d}

+{{{{a, 0}, d}, e} e} + {{{{a, 0}, ¢}, e}, d} + {{{{a, 0}, ¢}, d}, e}

Finally, we obtain the needed result. O

Remark 19. An algebra 732! (+)<X> satisfies the following identity:

{av {b7 C}} + {{av C}> b} + {{av b}v C} =0,
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Hyitcenbait E. K., Capraes B. K., Teke6ait A. A. 3-HOJI/IIK AJIBTEPHATUBTI, ITPE-
JIN YJKOHE ACCUMMETPUAJIBIK OITEPATAJIAP

AubrepraruBTi ajarebpajap KaTaH acCOIUATHBTIKTEH aybITKbIFaH, Oipak maiaaisl 60y
VIIH KETKITIKTI KYPbUIBIM/IBI CAKTAMTBIH KYyHesep/l 3epTTey KoHe MOJIeJIbJley YIIH eTe
Maub3abl. HIbiHbHga 18, agrpTepHaTuBTi ajaredbpasap accoruaTuBTI ajaredpaap/Ibl KaTaH ac-
COIMMATUBTIK IIapTThl DOCAHCHITY apKbLIbI XKaJIbLIaiabl. AJbTepHATUBTI ajarebpasap, opuHe,
aCCOIUATUBTI eMec OoJIiHy aaredpachbIHbIH HEri3ri MbICAJIBI OOJIBIT TAOBLIATHIH OKTOHUOH AP~
abl Kamtuabl. Oxkronnongap Keitnn-IMKCOH KypbLIBIMBIHBIH O6JIiri OOJIbII TabbLIaIbl YKoHE
reoOMeTpHUsIa, TOIMOJOTHUALA YKOHE TEeOPUIbIK (PU3NKaIa, dcipece >Kejll TeOPUSACHIHIa >KOHE
epekiie JIu TonTapbiHZa MaHBI3ALI POJI aTKApPaabl. AJILTePHATHBTI aJreOpaHbly, IIbIFY Teri
GeJiny ajredpacblH TApUXU 3EPTTEYIE YKATBIP YKOHE OJIAPIbIH, KOJIAHBLIYBI 9PTYPJH MaTe-
MAaTHKAJIBIK YKoHe (DPUBNKAJBIK, IIOHIepre, 9cipece acCOIUATUBTI eMec aaredpasiblK KypPbLIbIM-
nmapabl TyciHyre Tapasajpl. By skyMbicTa 6i3 23 = 0 KochIMINa CoifKecTiriMeH epkiH ajib-
TEePHATUBTI aJrebpaHbl KapacThIpaMbl3. MoTuBalust yImiH aJbTepPHATHBTI OIlepaIaHbIH KOC
onepacbia Kyrinemis. Conaii-ak, 6i3 exinik mepm asirebpaceinan 2 = 0 coiikecriri 6ap mpe-
JIn asnrebpacein asampis. CoHpiHia, ©° = 0 coifkecTiri 6ap accOCHMMETPUSIIBIK, alrebpaHb!
KapacTbIPaMbI3.

TyitiH ce3aep: aabTepHATUBTI ajaredbpa, mpe-Jlu anrebpa, acCOCUMMETPHSIIBIK, aaredpa,
KOIIMYIIIEJIIK COMKECTIKTED.

Hyitcenbait E. K., Capraes B. K., Texebait A. A. 3-HYJIEBAA AJIbTEPHATUBHAZ{,
MPE-JIN 1 ACCOCUMMETPUYECKA{A OITEPAJIbI

AnbrepHaTUBHBIE AMTEOPBI IMEIOT PEIaloNee 3HAUeHNE TSI U3YICHUST U MOIETNPOBAHST
CUCTEM, KOTOPBIE OTKJIOHSIOTCS OT CTPOIrON aCCONMATUBHOCTU, HO COXPAHSIOT JOCTATOYHYIO
CTPYKTYPY, YTOOBI OBITH IMOJIE3HBIMU B ajirebpe. JleficTBuTe IbHO, ajlbTepHATUBHBIE aJreOpPhI
060bIIAIOT acCONMATUBHBIE aIredpbl, 0CaabIIsisl YCIOBUE CTPOTO accorMaTuBHOCTH. AJIbTep-
HaTUBHDBIE aJIreOPhl €CTECTBEHHBIM 00Pa30M BKJ/IIOYAIOT OKTOHUOHBI, KOTOPBIE SIBJIAIOTCS KJIIO-
YEBBIM IIPUMEPOM HEACCOIMATUBHON ajrebpbl ¢ jesieHneM. OKTOHUOHBI SIBJSIIOTCS YaCTbIO
koucTpykimu Kamn-JlukcoHa u UrpaioT BazKHYIO POJIb B T€OMETPHUHU, TOTIOJIOTUU U TEOPETHIe-
ckoil busmKe, 0OCOOEHHO B TEOPHUH CTPYH U MCKJIIOUYUTENbHBIX rpynnax Jlu. IIpoucxoxaenue
AJIbTEPHATUBHBIX aJredp JIEKUT B UCTOPUUECKOM HUCCJIEIOBAHUU aJredp ¢ JIeJIEHUeM, U UX
[IPUJIOZKEHUST PACIIPOCTPAHAIOTCH HA PA3JIMYHBIE MaTeMaTUdecKue U (pU3ndecKue JTUCIUILIIU-
HBI, 0CODEHHO B TIOHMMAHWU HEACCOIMATUBHBIX aJredpamvyeckux CTpyKTyp. B 3Toit crarbe
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MBI paccMaTpuBaeM CBOOOIHYIO aJIbTEPHATHBHYIO ajredpy ¢ JOIOJHUTEIBHBIM TOXKIECTBOM
2% = 0. JIIs1 MOTHBAIIH MbI CChLIAEMCS HA JBOICTBEHHYIO OIEPay aJbTePHATHBHON Olepa-
nb1. Takske MbI osrygaeM 1pe-Jlu anrebpy ¢ ToxkaecTBoM 2 = 0 u3 GUHAPHOI TIepM aIrebpEI.
HakoHell, MbI PACCMATPUBAEM aCOCHMMETPUUECKYIO ajrebpy ¢ ToxKIecTBoM 5 = 0.

KiroueBble cjioBa: ajbTepHaTHBHasA ajrebpa, mnpe-JIu anrebpa, accocmMMeTpUYIecKast
ajrebpa, MOJIMHOMHUAJIbLHBIE TOXK IECTBA.

KAZAKH MATHEMATICAL JOURNAL, 24:4 (2024) 37-51



KAZAKH M ATHEMATICAL JOURNAL ISSN 1682-0525

24:4 (2024) 52-62

Transformation of degenerate indirect control
systems in the vicinity of a program manifold

Sailaubay S. Zhumatov

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
sailau.math@mail.ru

Communicated by: Anar T. Assanova

Received: 13.12.2024 % Accepted/Published Online: 10.01.2025 % Final Version: 08.01.2025

Abstract. We consider one of the classes of implicit differential systems, systems of ordinary differen-
tial equations that are not resolved with respect to the highest derivative. Such equations are often
found in everyday life in mechanics, physics, economics, biology, etc. The problems of constructing
automatic control systems according to a given smooth program manifold are also come down to such
equations.This is the case when the dimension of the systems of equations under construction is greater
than the dimension of the program manifold. Then systems of algebraic equations with a rectangular
matrix arise. We consider a system with a square matrix, the discriminant of which is zero. The general
problem of constructing systems of differential equations for a given manifold is considered. A necessary
and sufficient condition is drawn up that the manifold is integral to the system of equations. The Yeru-
gin function is linear with respect to the manifold. Then an indirect control system is built, taking into
account that a given manifold is integral to it under certain conditions. In general, the Jacobi matrix is
rectangular. The case is investigated when the matrix is quadratic and has zero roots. The manifold is
assumed to be linear with respect to the desired variable. A degenerate indirect control system is ob-
tained, unresolved with respect to the highest derivative. Equivalence to a certain system is established,
the matrices of which are constant and have a special structure. Lyapunov transformation matrices are
found. It is shown that the considered control systems can be reduced to a central canonical form. A

brief overview is provided.

Keywords. program manifold, degenerate systems, equivalence of systems, indirect control automatic

systems, Lyapunov transformation, canonical forms.

2010 Mathematics Subject Classification: 34K20; 93C15; 34K29.

Funding: This research is funded by the Science Committee of the Ministry of Science and Higher Edu-
cation of the Republic of Kazakhstan (Grant No. BR20281002).

DOI: https://doi.org/10.70474 /wcda3590

(©) 2024 Kazakh Mathematical Journal. All right reserved.



Transformation of degenerate indirect control. .. 53

1 Introduction

We consider an implicit unsolved system with respect to the derivative
H((t,x(t)&(t) = F(t,z), HeR”>" xe€R", FER tel=(-a, ). (1)

Here a, 8 are finite or infinite numbers. Linear systems of this kind unsolved with respect to
high derivative or algebraic differential systems have wide application in everyday practice.
These systems have substantial applications in the dynamic of a space vehicle, economic
control, robotics, theory of electric chains ets. Here is a brief review of some important
properties of these systems. The existence and uniqueness of solutions of degenerate linear
systems, and reducibility of systems with variable matrices to the systems with constant
matrices were studied by A.M. Samoilenko and V.P. Yacovets [1], V.P. Yacovets [2]. In these
works degenerate systems were reduced to different canonical forms, and solution algorithms
were constructed for linear systems. In work [3], S.A. Mazanic examined the equivalence
problem considering systems to systems with constant and piecewise constant coefficients.
Central canonical form and stability of degenerate control systems were considered in [4].

The problem of constructing systems based on a given program manifold is also a sub-
class for systems of type (1). We investigate the establishment problem of equivalence and
reducibility degenerate indirect automatic control systems.

Consider the problem of constructing, for a given smooth program manifold €(¢), the
following system of differential equations

i=f(tx), (2)

where f,z are n-dimensional vectors, f € R" is continuous in all variables and the existence
conditions of the solution z(t) = 0 are satisfied; and the program manifold €(¢) is defined by
the following equations

Q) =w(t,z) =0, (3)

where an s-dimensional vector w (s < n) is continuous in the single-connected closed domain
including the manifold Q(t), together with its partial derivatives.

Definition 1. The set Q(t) is called an integral manifold of the equation (2), if the condition
w(to, zo) € Q(tg) implies that w(t,z) € Q(t) for all t > to.

Note that the term “program manifold”, used in this paper, is equivalent to the notion of
“integral manifold”.

Composing a necessary and sufficient condition that the program manifold Q(¢) is integral
for the system (2) we obtain

. Ow .
w—a—l-Hx—F(t,az?w), (4)
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0
where F(t,z,0) = 0 is some Erugin vector function [5, 6], H = 8—w is the Jacobian matrix
x
and its rank is equal to rankH = s at all points of Q(t).

Solving equations with respect to & we find

dw
E,telz(—a, B). (5)

HeR*™ zxeR"'\we R, FeR°

H((t,z(t)z(t) = F(t,z,w) —

At s < n many authors have been studying the construction of equations systems on a
given program manifold possessing by the stability properties, optimality, and establishing
quality estimates of transition process index in the vicinity of the manifold. A detailed review
of these investigations is adduced in [7-9]. We consider the problem of finding transformation
matrices for the system (5) allowing us to reduce them to an equivalent system.

2 Transformation of degenerate indirect control systems in the vicinity of pro-
gram manifold.

Together with Equation (2), we consider the indirect control system with feedback of the
following structure [10]:

&= f(t,x) = Bip(o), tel=(-a,f), (6)
E=¢(0), o=Plw-Q¢,

where x € R™ is a state vector of the object, f € R" is a vector-function, satisfying to
conditions of existence of a solution z(t) = 0, and B; € R™", P € R**" are constant
matrices, @ € R"™*" is a constant matrix of rigid feedback, (o) is a function differentiable
with respect to o, satisfies the following conditions

0(0)=0A0<olp(o) <ol Ko Vo #0. (7)

Here K = KT >0, K € R™".
For the manifold €(¢) to be integral also for the system (6)—(7) on the manifold w = 0 it
is necessary to have the condition £ = 0. This condition is satisfied if and only if Q) # 0.
Taking into account that €(¢) is an integral for the system (6)—(7) differentiating program
manifold Q(¢) (3) in time ¢ by virtue of the system (6), we obtain

H((t, :Z( Ni(t) = F(t,z,w) — q(t) — BE, (8)

€: ) O-_PTW_an tEI:(a,ﬁ),
Ow Ow . .
where H = 5 = g B=HB), He R, x € R", w € R®, F' € R®, nonlinearity ¢(o)
x

satisfies also to generalized conditions (7).
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We consider the case where s = n and the matrix H has k null roots. Choosing the
manifold in the following form

w=Ai(t)r +g(t) =0, (9)

where A;(t) € R**® is a given continuous matrix, ¢(¢) is a continuous vector function, we
present the Erugin function in the form of

F(t,z,w) = —As(t)z. (10)

Here — A5 is a Hurwitz matrix, As € R*%.
Thus we obtain the following system:

H(D)i(t) = —A(t)e — q(t) - Be. -
§=¢(0), o=T"z—Plg(t)-Q¢ tel=(xf),
where H(f) = A1(), A1) = ~ A1)~ 220 g0y = P00 1,4y, 17 = PT A ),
In (11) we select the linear part relatively to x:
H(t)x(t) = —A(t)z. (12)

Definition 2. An absolutely continuous function x(t) is called a solution of System (12) if it
makes the identity of this system almost everywhere in the interval ¢t € I.

Definition 3. An absolutely continuous matrix X € R**" is called a fundamental matriz of
System (12) if for all constant vectors ¢ € R" a function x(t) = X (t)c is a solution of system
(12) and for any solution z(t) of System (12) there exists a unique constant vector ¢ such that
z(t) = X(t)c.

We consider a system of a similar type together with the system (12):
Dt)y+G(t)y=0,t eI, (13)

where D and G are absolutely continuous (s x s)-dimensional matrices bounded on the interval
I, for all t € I the determinant of the matrix D is equal to zero and the automatic control
system has the following form

?wyszy—ﬂﬂ—B& (14)

:90(0)7 U:é(t)y_ég(t)_aga tEI:(Oé, B)

Here B € RV, G € R**¥, Q € RY*V are constant matrices, nonlinearity ¢(o) satisfies
conditions of the type (7).
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Definition 4. Systems (12) and (13) are called asymptotical equivalent if there exists a Lya-
punov matrix L such that for any solution y of System (13) and a function z = Ly is a
solution of System (12), and for any solution x of System (12) the function y = L™!x is a
solution of System (13).

Theorem 5. Systems (12) and (13) are equivalent if and only if there exists a Lyapunov
matriz L such that for the fundamental matriz' Y of a solution to System (13) one can find
a fundamental matriz X of a solution to System (12) for which the presentation X = LY s
valid.

Theorem 6. Let H(t) and A(t) are absolute continuous matrices bounded together with their
first derivatives in the interval I, rankH(t) = k for all t € I and for all k,1 < k < s and
there is a sub-matriz Ho(t) € RF** of the matriz H(t) satisfying the following conditions

inf[det(Ho(t)] > 0Vt € I, inf[0" /ON" det(H(H)A + A(t)] >0 Vt e I. (15)

Then for all t € I there exist non-singular matrices T and S such that multiplied by T the
left-hand side and replaced by x = Sz System (12) is reduced to the equivalent system (13)
and the matrices D(t) and G(t) are of the form:

O O
po=|5 &

where O1, Oz, and O3 are (k x k), (k x 1), and (r X k)-dimensional null matrices, corre-
spondingly, E1 and Eo are (k x k) and (r x r)-dimensional unique matrices, Go(t) is a local
summable and bounded (r x r)-dimensional matriz.

E; O

05 Golt) ||’ (16)

e |

Proof. Let the submatrix Ho(t) be in the lower right angle of the matrix H(¢). We
represent the matrix H(t) in the block form.

t)  Hy(t)

t)  Ho(t)

where Hi(t)((k x k), Ha(t)((k x r), and Hs(t)((r
(

continuous in the interval I matrices C1(t)((k
together with their first derivatives

)= | 32

. (1)

k) are matrices. Then there exist absolute
r) and C3(t)((r x k) which are bounded

X

X
Ci(t) = Ha(t)Hy ' (t),  Cs(t) = Hy ' () Hs(1).

Therefore, the matrix H(t) can be represented in the following form:

Ht) :‘ C1(t)Ho(t)Cs(t)  Ci(t)Ho(?) H

Ho(t)C3(t) Ho(t)
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Choosing matrices 7'(t) and S(t) in the form of

E, —Ci(t)
O1 Hy'(t)

Ey O-

—Cs3(t) Eo ||’ (19)

ro-|

. s =|

and multiplying by T the left hand said of System (11) and replacing by x = S(t)z we obtain

D(t)z = —F(t)z — q(t) — D(t) BE,
§=¢(0), o=DT(H)A1)S(t)z—DTg(t) - Q¢ tel=(a, f).

Here D is the same (16) and

(19)

F(t) = T()H(t)S(t) + BS(t). (20)

According to the definition of the matrix C3(t) we conclude that S(¢) is a Lyapunov
matrix and System (19) is asymptotically equivalent to System (12). Consequently, System
(19) is equivalent to System (11).

Now we represent the matrix F'(¢) in the bloc form.

F(t) F(t)

ro=| 26w | e

where I (t)((k x k), Fa(t)((k x r), F3(t)((r x k), Fo(t)((r x r) are matrices and z = (27, 21)7.
Then the system (19) can be written as follows:

Fi(t)z1 + Fa(t)22 = qi(t),
2y = —F3(t)z1 — Fo(t)ze — Hy 'q(t) — Baé, (22)
§=¢(0), o=D"{t)A(t)S(t)z — D g(t) - QE,

From Equation (20) it follows that

F(t) = T(t)BS(t) + G(t), (23)
where
_ . o) O,
G(t)=D@)S1(t)S(t) = : , 24
=05 050 =| % ) 0 24)
and Og(r x ) is the null matrix.
Based on relationships (20), (21) and (23) we derive
det| H(O)A + B(1)|| = detT_1(t)det| DA + F(t) — G|/ detS~(t) =
= detHy(t)det|| DX + F(t) — G| (25)
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Using Laplace decomposition for computing the determinant from (15), (21), and (25) we
obtain

r—1
det| DA+ F(t) — G| = A'detFy(t) + > i(t)A", (26)
=0

where 1); are some functions for i = 0,1,...,r — 1. Therefore, because of (14), (25) and (26)
the following inequality is valid:

inf det || Fy(¢)|| > 0.
tel
Taking into account Expression (22) this inequality implies the equality

21(t) = ~F () Fit)za 2), (27)

a(t) = [B3(t) FT (D) Fa(t) — Fo(t))z2(1). (28)
Assume that Zs(t) is the fundamental matrix for solutions of Equation (28). Then from (27)
and Definition 2 it follows that the matrix

(29)

o5 -1

Zs(t) Zs(t)

is fundamental for System (19).
Now we consider System (13) where D and G are defined by the formula (16) with locally
summable and bounded on the interval I matrix

Go(t) = Fo(t) — F3(t)Fy L (t) Fa(t).

If Y is a fundamental matrix of System (13) then there exists a constant matrix Cy(r x r) for
which the following holds:
e | B E @D ||| 20
Y(t) = L(t)Co = ” O B, ( H : H Z() H - Cy. (30)
From (19), (21), (23), and (28) it follows that F; ' and Fy are absolute continuous matrices
that are bounded together with their derivatives in the interval I. Therefore, the matrix L
is a Lyapunov matrix. According to Theorem 1, System (22) is asymptotically equivalent to
System (11) and, consequently, to System (12).
Now, we note that System (11) may be reduced to the central canonical form. For that,
we introduce the operator L;(t) = —A(t) — H(t)d/dt to System (12).
The following theorem holds.
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Theorem 7 (V.P. Yacobets [2]). Let A(t), H(t) € C*™(«a,f), rankH(t) = k, and H(t)
have the full of Jordan collection with respect to the operator Li(t) in the interval I which
are formed with r cells of degree 11, ..., I, since max;l; = m. Then there exist for allt € T
non-singular s x s-dimensional matrices MG1(t) € C*(a, B) such that multiplying by M (t)
and replacing by x = G1(t)y System (12) is reduced to the following central canonical form

o ol

\ y+ T(0)) (1), (31)

where | =1y + 1., J = diag(J, ..., J, are Jordan cells of degree l;,j =1,...,r).

By Theorem 7 we reduce System (11) to the following system in the central canonical
form

w = =V(t)u— Mi(t)q1 — Mi(t)Bgt)ei(o1),
Ju = —v—M(t)q1 — Mi(t)Bot)p1(o1),
o = Qlu+Pla(t)—Qi&,
oy = Qyu+ P gi(t) — Q&
g = (O{v U2T)T’
= (uT, ’UT)T.

This system may be investigated with respect to the stability and other quality charac-
teristics when Q1(¢) and Q2(t) are bounded external perturbations [11], [12].

Next, we present the results of recent research conducted on various qualitative issues
of program manifold for differential system, which can be extended to degenerate control
systems [13-19].
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YKymaros C.C. BATTAPJTAMAJIBIK KOIIBEITHE MAHAVBIH/IA A3BIHTAH TV-
PA EMEC BACKAPY KYWEJIEPIH TYPJIEHIIPY

AWKBIH eMec auddepeHInalblK, Kydeaepaid 6ip Kiachkl, *KOFapFbl TYBIHIbI OOMBIHIIA
IIemIiiMerer Kol auddepeHuaIabIbIK, TeHaeyaep XKyiieci KapacThipbliaabl. MyHal TeH-
Jeyaep KYyHIETIKTI eMipie mMexaHnka, (pu3nka, SKOHOMUKA, OMOJIorns KoHe T.0. cajajap/ia
xKui kezmecedi. MyHgail TeHgeyaepre OepiireH »KaTblK, OaraapaaMaJibIK, Kerbeine OGONbIHIIA
aBTOMATTHI DacKapy Kyitesepin Kypy ecebi me kearipineai. By KypbLibil 2KaTKaH TeHILY/Iep
JKYiieciHiH eJImeMi baraapaMaliblK KOOeHEeHIH oIeMiHeH YVIKEH OoJIFaH arbl XKaraail. By
apajia TIKTepTOYPBIIITHI MATPUIIAJIbL aaredpaJsiblk TeHIey Iep xKyiieci naiiga boaas. Biz muc-
KPUMUHAHTBI HOJITE TEH KBaJIpaTThl MATPHUIIAJIbI XKYieHl KapacTbipaMbl3. bepiiaren kembeitHe
bofibiamTa auddepeHInal bIbIK TeHIeyIep XKyHeciH KYpPyJbH KaJbl ecebi KapacThIpbLIa-
nel. Kemnbeitnenin Tenaeysep »Kyieci YIIH HHTErPAJIILIK, OOJTYBIHBIH KAYKeTTI YKoHe KeTKIJIiK-
Ti MmapTTaphbl KypbLIajbl. Epyrua QyHKIUSICH KemOeiinere KATBhICTBI ChI3BIKTHI €Till TaHIaIl
asibiHa b, CoHaH COH Oesiriii 6ip ImapTTap OpbIHIAJFaH I8 OepireH KonbeiiHeHIH XKyiie YImiH
MHTErpaJIabIK, 00JATBIHBIH €CKePe OTHIPHII, TYypa eMec bacKapy »Kyiieci Typroi3bLiaabl. 2Kai-
el XKafrmaiga fAxkobu Marpuiachl TIKTOPTOYPBIMITHI OOJBIT TabbLIaabl. bi3me MaTpuUIlaHBIH
KBaJIPaTTBIK OOJIybl XKoHEe HOJIIIK TyOipsepi 60y >Karmailbl KapacTblipbLiaibl. Kembeiine i3-
JeTHI alfHBIMAJIBIFA KATBICTBI CHI3BIKTHI €Till aJIbIHaIbl. 2KOFaprbl TYbIHIBI OONDBIHIIA, IITe-
IIiJIMEreH, a3bIHFaH Typa eMec backapy XKyiieci aJbHabl. MaTpuiachl TYPaKThl YKoHe apHAEI
KYPBUILIMIBI OeJiriyii Oip Kyitere sKBUBaJICHTTI OOIybI TaralblHIAAbL. JISIyHOB TYypJIeH I
Py MaTpHUIAChl TaOBLIILI. KapacThIPBIILII OTbIpFaH OacKapy KYHeciHiH OpTajblK, KAHOHIBIK,
TYpPre KeaTipijie aJaTblHALIFBI KOpceTiiai. KpicKala Moy KacaablHIbL.

Tyitin cesaep: Barmapmamaabik KemmOeiiHe, as3bIHFaH XKyitesep, >KyieHiH 3KBUBaJEHT-
Tijiri, Typa emec backapy XKyitesepi, JIamyHos TypaeHIipyi, KAHOHIBIK TYPJEP.

Kywmaros C.C. IIPEOBPAZBOBAHUA BBIPOXKJIEHHBIX CUCTEM HEITPAMBIX
VIIPABJIEHIIT B OKPECTHOCTU ITPOI'PAMMHOI'O MHOT'OOBPA3S

PaccmaTpuBaeTcst 0/inH U3 KJIACCOB HESIBHBIX UMD MEPEHITUATBHBIX CUCTEM, CUCTEMbI OOBIK-
HOBEHHBIX AuddepeHnuajibHbIX yPaBHEHN, He Pa3PeIeHHbIX OTHOCUTE/IHLHO CTapIneil mpon3-
BojHOU. Takue ypaBHEHUsI YaCTO BCTPEUAIOTCS B MOBCETHEBHOW YKU3HU B MEXaHUKE, (DU3UKE,
9KOHOMUKe, Ouojiorun u T.71. K TakuM ypaBHEHUsIM IPUBOJATCA U 331241 IIOCTPOCHUS CUCTEM
ABTOMATUYECKUX YIPABJICHUHN TI0 338JaHHOMY TJIAJKOMY IPOIPAMMHOMY MHOI000pa3uio. DTO
caydail, Korja pa3sMepHOCTb CTPOSIIUXCS CUCTEM yPaBHEHUM OOJIBITE, YeM Pa3MEpHOCTH IIPO-
rpaMMHOIO MHOTO0Opa3usi. Tor/ia BOZHUKAIOT CUCTEMbI aJIredpanIecKinX YPaBHEHUN C IIPAMO-
yroabuoit Mmarpuiieii. Mbl paccmMaTpruBaeM CHUCTEMY € KBaJIpATHONW MAaTPUIEil, TUCKPUMUHAHT
KOTOPOIT paBeH HyJ0. PaccmaTpruBaercsa ob1mast 3a/1a4a IOCTPOEeHHsI cucTeM auddepeHnumaib-
HBIX ypPaBHEHUI 10 3aJJaHHOMY MHOT000Opas3nto. COoCTaBISIOTCS HEOOXOIUMOE M JJOCTATOTHOE
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YCJIOBUS TOrO, 9TO MHOI000pas3ue siBJIsi€TCs UHTErPAJIBHBIM JJIs CHUCTEMBbI ypaBHeHuii. BbI-
OpanHasi pyHKINA EpyruHa JuHeiiHa OTHOCUTEILHO MHOI00Opa3nsi. 3aTeM CTPOUTCS CUCTEMA
HEIPSAMOIO yIPABJIEHUS C YIeTOM TOI'O, YTO 3aJIAHHOE MHOI0OOPa3Ue SABJISETCSH UHTErPAJIb-
HBIM JIjIsI Hee MPU BBIIOJHEHUN HEKOTOPBIX ycjoBwmit. B obmiem ciaydae marpuia xobu siB-
JIsieTcs TpsaMoOyToJibHOM. Vccemyercss ciaydai, KOrja MaTPHUIA SIBJISETCS KBAJIPATUIHON H
UMeeT HyJeBble KOPHU. YCTaHABJIMBAETCI SKBUBAJEHTHOCTH K HEKOTOPOH CUCTeMe, MATPHUIILI
KOTOPOI TIOCTOSIHHBI M UMEIOT CIIEIUAJILHYIO0 CTPYKTYPY. Haiiiensr maTpuiibl mpeobpa3oBaHms
JIsmynosa. [lokazano, 4To paccMaTpuBaeMble CUCTEMBI YIIPABICHUS MOI'YT ObITH IIPUBEJICHBI
K IEHTPaJbHON KanoHu4eckoit popme. Ilpusenen kparkuit 0630p.

Kirouesbre cioBa. IIporpamMmuoe MHOroobpasne, BBIPOKIEHHBIE CHCTEMBI, SKBUBAJIEHT-
HOCTH CHCTEM, aBTOMATUYIECKHE CUCTEMbI HEIIPSMOIrO YIIpaBJjeHusi, Ipeobpa3oBanusl JIsimyHo-
Ba, KAHOHUIECKHE (DOPMBI.
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Abstract. This paper substantiates the solution by the method of separation of variables of the initial-
boundary value problem for the heat equation with a discontinuous coefficient, under periodic or anti-
periodic boundary conditions. Using the Fourier method, this problem is reduced to the corresponding
spectral problem. The eigenvalues and eigenfunctions of this spectral problem are found. It is shown
that the spectral problem is non-self-adjoint and a conjugate spectral problem of this original spectral
problem is constructed. Further, it is proved that the system of eigenfunctions forms a Riesz basis. For
this purpose, a self-adjoint spectral problem is constructed and its eigenvalues and eigenfunctions are
found. In conclusion, using biorthogonality, the main theorem on the existence and uniqueness of a

classical solution to the problem is proven.

Keywords. Heat equation with discontinuous coefficients, spectral problem, non-self-adjoint problem,

Riesz basis, classical solution, Fourier method.

1 Introduction
Problem statement and research methods

We consider an initial boundary value problem for the heat equation with a piecewise constant
coefficient

ou 5 0%
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in the domain 2 = 7 U 9, where
O ={(z,t):0<z<zp, 0<t<T}, Qa={(z,t):xo<zx<l, 0<t<T}

with the initial condition
u(z,0) = p(z), 0<ax <, (2)

the boundary conditions of the form

0,t —1)™u(l,t) =0
U(a’u(g:)r( ) Q;(’ c’gu(lt), 0<t<T, (3)
k1=~ + (=1)"ke =5~ =0,
and with the conjugation conditions
u(zg — 0,t) = u(xo + 0,1), (1)
ky au(xgx—o,t) — ko Gu(xga;i-o,t)’

where the point xq is a strictly internal point of the interval (0,1), that is, 0 < xg < [. The
coefficients k; > 0, (i =1,2), m = 1,2.
Parabolic type equations with discontinuous coefficients have been studied quite well [1-5].
In these works, the correctness of various initial boundary value problems for a parabolic type
equation with discontinuous coefficients was proven using the Green’s function and thermal
potentials method. In the case without a discontinuity, the spectral theory of these problems
is constructed almost completely [6-12]. In [13-14|, some properties of the eigenfunctions
of the Sturm-Liouville operator with discontinuous coefficients were studied. In the case of
a discontinuous coefficient, the spectral theory of such problems is considered in the works
[15-17).
First, we consider the case m = 1. We look for a solution to Problem (1)-(4) in the form
u(x,t) = v(x,t) + w(z,t), where v(x,t) is a solution to the following problem A:
o 0%
ot " 02
v(z,0) = p(z), 0<x<lI,

v(0,t) —v(l,t) =0,

0<t<T,

Ky av(xgx—O,t) — ko Ov(zo+0,t)

{U(xo - O>t) = U(fEO + Ovt)v
ox )

where w(z,t) is a solution to the following problem B:

ow 5 0%w

azkiw+f($at)
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w(z,0) =0, 0<z<l,

w(0,8) —w(il, ) = 0,
{kaw(m) Ry 2u) _ 0<t<T

w(zo —0,t) = w(zo + 0,1),
Ky Ow(zo—0,t) = ky Ow(xo+0,t)

ox ox )

Let W denote the linear variety of functions from the class
u(z,t) € C(Q)UCH Q1) UC* ()

which satisfy all conditions (2)—(4).

We call a function u(z,t) from the class u(z,t) € W a classical solution to Problem
(1)—(4), if

1) it is continuous in the domain (;

2) has in the domain continuous derivatives of the first order with respect to ¢ and
continuous derivatives of the second order with respect to x;

3) satisfies Equation (1) and all Conditions (2)—(4) in the usual, continuous sense.

We look for a solution to problem A using the Fourier method: v;(x,t) = X;(x)-T'(t) # 0.
Substituting the boundary conditions and the pairing conditions into the equations, and
separating the variables, we obtain the following spectral problem

_ 1.2y T T T
o= 05 v
X1(0) - X2(l) 0 (6)
k1 X1(0) — ko X5(1) =
X1(zo —0) = Xa(zo + 0), i( —-0) = kQXé(l’o—i-O), (7)

The function T'(t) is a solution to the equation
T'(t) + \T'(t) = 0.

Now we need to find the eigenvalues and eigenfunctions of Problem (5)—(7). The general
solution to Equation (5) has the form

{X(x) =cjcospuix +cgsinpizr, 0 < < x, (8)

X (x) = dy cos pox + do sin poz, x9 < x <,
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Substituting the general solution (8) into the boundary conditions (6) and the conjugation
conditions (7), and taking into account that pik; = poks = v/A we obtain

c1 = dy cos(pual) + dg sin(ual)
co = —dy sin(,ugl) + do COS(/LQ[)

. : 9)
c1 cos(p1xo) + casin(pizo) — di cos(pazo) — dasin(paxo) =0
—cysin(u1zo) + casin(pixo) + di sin(paxg) — da cos(uazp) =0
We find the characteristic determinant of the system (9):
A A
A0 = 2(1 - cos(Y2)) = asin? (2 =0, (10
r 2r
where )
I + ko
From Equation (11) one can find the eigenvalues (they are twofold)
Ap = (2mnr)?, wheren =0, 1, 2,... (12)
These eigenvalues correspond to the eigenfunctions
;o (2mnr
0
Xow) = € SPCRD, 0 <w <o (13
sin(FF2(z — 1)), mo <z <,
2mnr
~ 0
£0(2) = C cos(zk1 x), < x < xo, (14)
cos(5(x — 1)), xo <z <,

where r determined by the formula (11).

Lemma 1. Spectral problem (5)-(7) is non-self-adjoint. The adjoint problem to problem
(5)—-(7) has the following form:

[k (x), O0<z<m0)| _

LY () = {—k‘%Y”(ac), xo<x<l| AY () (15)
k1Y1(0) — k2Ya(l) =0 (16)
BY{(0) - KY{(0) = 0

k1Y1(zo — 0) = koYa(zo +0), k{Y{(zo — 0) = k3Y3(z + 0), (17)
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Proof. We find the conjugate problem to Problem (5)—(7). Given the following formula
—X"(@)Y (2) = (V(2)X(2) = YV(2)X'(2))" = Y"(2) X ()

we obtain
l o l
/ Y(x)LX () dx = —/ Y (2)k2 X" (z) dz —/ Y (2)k3 X" (z) dz =
0 0 x0
= —k¥Y (20 — 0)X (0 — 0) + k¥Y (0)X'(0) + kY (20 — 0) X (20 — 0)+
+EY(0)X(0) — k3Y (1) X' (1) + k3Y (w0 + 0) X (z0 + 0) + K3V (1) X (1)
!
—k3Y (w0 + 0) X (20 + 0) +/ X(z)LY (z) dx.
0
Using boundary conditions (6) and pairing conditions (7) we have
!
/ Y (z)LX (z)dx = X (20 + 0) (k%Y’(aco —0) — k3Y'(xo + O))+
0
R X (20 — 0) (ng(xo F0) — kY (2o — o))+

kX (0) (k:lY(O) - /.CQY(Z)) + X(0) (kgy'(m - kfyf(())) + / l X (2)LY (z)de.
0

From the last equality it follows that the formula

l !
/ Y(z)LX (z)dx = / X(z)LY (z)dx
0 0
is executed only if Conditions (16)—(17). It follows that Problem (5)—(7) is not self-adjoint. [J
Lemma 2. The following problem is self-adjoint.

[—K}Z"(z), 0<z <3| _
LZ(z) = {—k:%Z”(:B), o<z <l| A (z) (18)

{@z@) —VEaZa(l) = 0 )
K 20(0) - k3 25() = 0
VEiZi(wo —0) = Vs Zo(wo +0), kP Zi(xo—0) = k3 Zy(wo+0),  (120)
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The proof of this lemma is similar to the proof of the previous one lemma 1. The
eigenvalues of the spectral problem (18)—(20) are equal to \,, = (2mn7)?, where (n = 0,1,2,...),
and two-fold, i.e. coincide with the eigenvalues of problem (5)—(7). The eigenfunctions are

equal
1 2mnr

() = C JTTSW( wrx), 0 <z <,
n\& 1 g (2mmr
\/—Esm( (=), mo <z <l

5 o \/%COS(QZ?TI'), 0 <z < o,
n(@) = L _cos(ZE (x — 1)), xo<x<I
N ko y 0 5

From the normalization condition we find C' = \/?, where r is determined by formula
(11). Then finally, the eigenfunctions of Problem (18)-+(20) have the form:

1 (2T
Zuw) = var { o) <o <o (21)
\/%sin(zzgr(x —1)), m<z<lI,

1 2mnr
znm:@{“{“m( h ek D<o

22
\/7—2005(2712;"(16—1)), xo < x <lI, (22)

Lemma 3. The system of the eigenfunctions (13)-(14) forms the Riesz basis.

Proof. From the formulas (13)-(14) and (21)-(22) it is easy to notice that the eigenvalues of
Problem (18)-(20) and Problem (5)—(7) coincide, while the eigenfunctions differ by a piecewise
constant factor. From the formulas (13)—(14) and (21)-(22) it is clear that the eigenfunctions
of Problem (5)-(7) and (18)—(20) are related by the following equality:

(?n(x) )ZQ(Q;) ( ﬁzgg > where o) = { i 20<<fv$<<x;, (23)

Sinse Z,(z) and Zn(z) are the eigenfunctions of the self-adjoint problem (18)-(20), the

system Zy(z), Z,(x) of eigenfunctions forms an L2(0,!) orthonormal basis [18]. We rewrite
formula (23) in the following form:

Zn(z) B X, (z) Xn(2) B Xn(2)
( Zn() > —A< % (2) , where A () = a(x) %0 (2) ,
A Ly(0,1) — L2(0,1) is a bounded operator and there exists A~! that is also bounded. It
follows that the system of the eigenfunctions X,,(z), X, (z) forms a Riesz basis.

Now we find the eigenvalues and the eigenfunctions of the conjugate problem (15)-(17).
The eigenvalues of the conjugate problem are not difficult to find, they are equal \,, = (27nr)?,
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where (n =0,1,2,...), and they are also twofold and coincide with the eigenvalues of Problem
(5)-(7). The eigenfunctions are defined as follows:

1 o0 (2701
=sin( z), 0<z<wxo,

Yo(r) =C { 14311 . 27]:7117” I I (24)
Esm(k—(ac —1), my<z<lI,
1 2mnr

- =cos( x), 0<z<wx,

Y,(z)=C { kll 27’:m l l (25)
eos(F(z = 1)), mo <z <,

It follows from the general theory that the system of eigenfunctions Xy (z), X, (z) and
Y, (x), Y, () is biorthogonal, i.e.

/X Ydx =0 and/X =0,

for any (n,m =1,2,...), and

/X 2)dr = 1, if n=m and X f/ 1, if n=m
0, if n#m 0, if n#m

From the normalization condition we find C' = +/27. O

Now we prove the main theorem.

Theorem 4. Let o(x) be a continuously differentiable function satisfying the conditions

©(0) = @(l), k1¢'(0) = ka2¢'(1), (w0 — 0) = @(x0 +0), k1¢p'(x0 — 0) = ko' (20 + 0).
Then the function

Z(son 2(@) + PuXn(a)) € (26)

where the coefficients @y, pn are determined by the formulas

1 l ~
o = /0 () Vo (), G = /0 o)V (2)da (27)

is the only classical solution to problem A.

Proof. First, we prove the existence of solution (26). Since X,,(z), X,(z) are the eigenfunc-
tions and the eigenvalues of Problem (5)—(7), then it is easy to verify that the function v(x, )
determined by formula (26) satisfies the equation, initial condition, boundary conditions and
pairing conditions of problem A. Series (26) is the sum of functions

oule,t) = (0nXa(@) + BuXa(@)) (28)
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We show that when ¢ > ¢ > 0 (here, € is an arbitrary positive number) the series
8% = 9%,
Z”n %), Z 2. 522

converges uniformly. Obviously, |¢| < M;. Then from the formula (27) it follows that
{lenl,|#nl} < Ma. Then from Equality (28) and from the following equalities

En = (“AXa@)pn = M Fn(@)Fa) e, D —k;(‘X"@%‘Xn@)%)@ :
we obtain
Oy, | | 0%vy,

’vn(x7t)’ < M3e—)\n5’ {

} < Myhpe e,

Ot || 0x2

where the constants M3 and M, are positive and does not depend on n. Thus

p >

n=1
where M > 0 and does not depend on n. Since the series

9vn
ot

9%vy,
0z2

vn(xa t) )

St (o)
— mnr g
} < Zane ,
n=1

0 2
9 —<2rmr) €
Z Mn*e
n=1
is an absolutely convergent series, therefore, according to Weierstrass’s test, the series
> Syat]
2
= ox
ov(z,t) 0*v(z,t)
ot 7 0x?

3vn

vn(z,

converge uniformly for ¢ > & and the functions v(x,t), are continuous for
t>e.

Now we need to prove that series (26) converges uniformly everywhere in Q. Note that
the n-th term of the series (26) is dominated by the sum |¢,| + |@n|. Integrating by parts the

integral in formula (27), we obtain

C n _ C i,
on < S el s i G Bl (Vi V),

—2mr n _2 n

where

—~

l

o = / () Zn(@)dz and @y = / & (2) 2 () da

0 0
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are Fourier coefficients of the function ¢’(z) with respect to the eigenfunctions Z,(x), Z, ()
orthonormal on an interval [0,[], determined by the formulas (21)-(22). It is known that the
eigenfunctions Z,(x), Z,(z) form an orthonormal basis. (See Lemma 2). Taking into account

1
the inequality ab < §(a2 + b?) we have

Ch - 2
"pn‘—’—")@n’_ Ay (ai+ai+712>-

Using the Bessel inequality

9
> (an+an) <21
n=1

1 2
and the well-known equality Z — = %, we obtain
n

n=1

oo
> (lenl + 120l < C.
n=1

Thus, the majorizing series is absolutely convergent, this means series (26) converges
uniformly in Q and defines a continuous function v(z,t) in . Thus, we proved the existence
of a solution. Now we prove its uniqueness. We assume that there are two solutions v(z,t)
and v(z,t). Then for the function v(z,t) = v(x,t) — v(x,t) we have the following problem C:

i = kZ&
ot 7 0x?’
v(r,0) =0, 0<z<I,
v(0,t) —ov(l,t) =0

ov(0,t) ov(l,t) 0<t<T,
& oz & or 0,
U(fﬁo - Ovt) = U(:I;U + Oa t)7
Ov(zg — 0,t) O0v(zg +0,1)
k1 = ko
ox ox

The solution to this problem C can be represented in the form of an expansion in terms of
the basis { X, (), X,,(x)} and it has the form:

v(,t) = 3 (An(t) Xn (@) + Ay (1) X, (2)). (29)

n=1
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The coefficients A, (t) and Kn(t) are easy to find if we multiply both sides of equality
(29) respectively by the functions Y, (x) and Y, (z), and integrate the resulting relationship
from 0 to [ and take into account the biorthogonality of the sequences { X, (z), Xn(z)} and

{Yn(:n),f/n(x)} Then we obtain

l l

An(t) = / o, )Y, () _ 0/ oz . (30)

0
First we transform the first equality in formula (30). Differentiating with respect to the
variable ¢ we obtain

l
[ Ov(z,1) B
= 0/ 5 Y, (z)dx =

l
0?v( " 2mnr 0*v(z,t) . (2mnr
= kl/ (93:2 ( o x) dx + kg/ 52 sin < " (x — l)> dx
To

Integrating by parts twice and using the boundary conditions and conjugation conditions,

we have
g
2mnr)? 2
Al (t) = _ (2mnr) /v(m,t) sin | 2 ) da—
k1 k
0

1

l

_ @rnr)’ /lv(x,t) sin (27;7”«( ) da = —)\n/v z)da = —ApAn(t),

kQ 2

o 0
Therefore Ay (t) = cpe Mt (n = 1,2,...). Transforming in a similar way we obtain for
the coefficient A, (t) the following:

AL () = =MAn(t) = Au(t) = e Mt

Substituting the found A, () and A, (t) into formula (30) we obtain
l

/lv 2)dz = cpet, / (2, 1)V (2)d = Gpet, (31)
0

0

Passing to the limit ¢ — 0 in equality (31) what is possible due to continuity v(z,t) in €,
we obtain

%gr(l) v(z,t)Y,(x)dx =0 = A,(0), }gr(l) v(z,t)Y,(x)dx =0 = A,(0),
0 0
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therefore ¢, =0, ¢, =0, (n=1,2,..).
Then from Formula (29) we obtain v(z,t) = 0. It follows from this that v(x,t) = v(z,1).
The theorem is proved. O

Knowing the solution to problem A, it is not difficult to obtain a solution to problem B.
This solution is given by the formula

o /1 ¢
w(z,t) = Z /fne_’\’L(t_T)Xn(x) —I—/ﬁe_’\"(t_ﬂj(/n(:v) , (32)
n=1 \0 0

where
l !
fa(T) = / fl@,7)Yo(2)dz, fo(r) = / f@, 7)Y (2)da.
0 0

Adding (26) and (32) we obtain a solution to Problem (1)-(4).
Now consider the case m = 2. Then, after applying the method of separation of variables,
we obtain the following spectral problem

[-KX"(x), O0<z<m0)| _
LX(z) = {—k%X”(x), o<z <lf AX (@) (33)

{Xl(()) +X5(1) =0 (34)
Xl(xo — 0) = Xg(xo + 0), k‘lXi (1‘0 — 0) = kzXé(l’o + O), (35)

The eigenvalues of Problem (33)—(35) have the form: A\, = ((2n+1)7r)?, (n = 0,1,2,...).
The following eigenfunctions correspond to these eigenvalues.

sin( (2n-11€-11)7r'r x),

0<zx<xg,
X,(zx)=C
(=) {sin((%z)m (=), xo<z<l,

cos(%x), 0 <z < xp,

—cos(%(l —x)), wo<x<lI,

X, (z) = C{

where r is determined by the formula (11).
All other calculations, including the proof of the theorem, are carried out in a similar
way.
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2 Conclusion

The method proposed in this article can be used in the case of n break points, where n > 3,
and for the more general case of the conjugation condition (in this work, the ideal contact
condition is considered).
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Koitnsmos Y.K., A6aspaxumos H.T. KOSOOUIINEHTI Y3LJIICTI BENJIOKAJIb-
Jbl MTEKAPAJIBIK [MTAPTTAPMEH BEPIJITEH 2KBIJIYOTKI3IMIITIK TEHIEY/I
OYPHE 0ICIMEH TITEITY

Makanaga koahdurmenTi y3iaicTi KpUTYOTKI3TIITIK TEHIEY VIMH MEPUOJITHIK HeMece
AHTUTIEPUOTHIK MTapTTapMeH bepiiiren HACTANIKBI-TIETTIK eCenTi affHBIMAIBLIAPILI AXKBIPATY
oxicimen mienty Herizgenren ypre oJiciH KOJIIAHY aPKBLIbI OYJ1 €cell COiiKec CIIEKTPJIK ecell-
K€ KeJrripisiren. Bepiiren crekTpJik ecernTin MEHIKTI MOHAEP] MeH MEHINKTI (DyHKIMIIaPhI
rabbiiran. CiieKTpJIiK ecemnTin 03iHe-031 TyiliH/Iec eMec eKeHi KOPCETINeH KoHe OepiireH crek-
TPJIK ecemnke TYiiiHIeC ecenl KypbLIran. bepiiren ecenTiy MeHIMNKTI dyHKIUAIAp XKyiteci Pucc
baszucin KypailTbiHbl JaJIe/geHred. ©3ine-031 TyHiHAEC CIIEKTPJIK ecell KYPhLIFaH KoHE OHbIH
MEHIIKTI MOHEPl MeH MEHINKTI (pyHKIUsIAphl TaObLIFaH. KopbITHIHIBLIAN Kese, 6UopTo-
TOHATBIBIKTHI TTAMIAIaHA OTHIPKIT, KOWBLIFAH €CENTiH KIACCUKAJBIK IMETiMiHIE 0ap >KoHe
SKaJIFBI3/IBIFB] TYPaJIbl HETI3TI TeopeMa o e IeH/Ti.

Tyiiiu ce3aep: kKoaddurmenTi y3iIicTi XKbUTYOTKIZNIIITIK TEHIEY, CIIEKTPJIK €Cell, o3iHe-
e3i Tyitingec emec ecer, Pucc 6a3uci, kiaaccukasbik, merrim, ypbe o/ici.

Kotineimos ¥V.K., A6aeipaxnvos H.T. PEIINEHUE YPABHEHUA TEILIOIIPOBO/I-
HOCTU C PASPBIBHBIM KOOOUITMEHTOM C HEJJOKAJIBHBIMU KPAEBBIMU
YCJI0BUAMU METOI0OM OYPBE

B nmannoit pabore 060CHOBAHO peIIEHHE METOAOM pa3fe/ieHnus] TTePEMEHHBIX HadaIbHO-
KPaeBoil 331a49u [IJid YPABHEHUS TEILIOMPOBOIHOCTH C PA3PBIBHLIM KO(DOUITMEHTOM, TIPH TIe-
PUOIMYECKUX WIN AaHTUIIEPUOINIECKUX TPAHNYHBIX yeaoBusx. Metogom Dypre nannas 3a1a-
ua CBEEHA K COOTBETCTBYIOMIEH CrieKTpaabHOl 3amade. Haiimersl coOCTBEHHBIE 3HAUECHUS W
cobcTBeHHBIE (DYHKITUHU JIAHHON CrieKTpajibHoil 3anaun. [lokazana, 9To crekTpajibHas 3a/a4ua
HECAMOCOIPSKEHHAS W MOCTPOEHA, COTIPSKEHHAS CIIEKTPaIbHAS 330292 JaHHONH TePBOHAYAJb-
HO¥ crieKTpaJibHOl 3ajauu. asee, Joka3piBaeTcs, 4To cucremMa cob6CTBeHHBIX (DYHKIMN 06pa-
gyet 6azuc Pucca. [Ijg 3T0r0 mocTpoeHa caMOCOPsAKEeHHAs CIIeKTPAIbHAS 331898 W HANIEHBI
ee cobcTBeHHbIE 3HAUYEHUs U COOCTBeHHBbIE (DyHKIMU. B 3aKk/IF0YeHUN, UCIOJB3YsE OUOPTOro-
HaJIBHOCTH JIOKA3aHa OCHOBHASI TEOPEMa O CYIIECTBOBAHUNA U €JMHCTBEHHOCTH KJIACCUYECKOrO
peleHns MOCTaBIEHHON 3a1a491.

KimroueBbie cjioBa: YpaBHEHUE TEILJIONPOBOIHOCTH C PA3PBIBHBIMU KO3bdUITmeHTaMu,
CTeKTpasIbHASA 33/a4a, HeCAMOCOTPSIKeHHasd 3aja4a, ba3uc Pucca, Kjaccudeckoe perleHue,
meToa Pypebe.
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