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Application of the Method of Decomposition into
Exponential Series by the Spectral Parameter in
Eigenvalue Problems

Baltabek E. Kanguzhin!, Zhamshid Zh. Khuzhakhmetov?

L2 Al-Farabi Kazakh National University, Almaty, Kazakhstan

'kanguzhin53@gmail.com, 2qjhmtv@gmail.com

Communicated by: Makhmud A. Sadybekov
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Abstract. The Sturm-Liouville operator plays a central role in the theory of differential equations,
mathematical physics, and applied mathematics. This operator arises in the Sturm-Liouville problem,
which is an eigenvalue problem for a differential equation under consideration. The Sturm-Liouville
operator generates a spectrum of eigenvalues and corresponding eigenfunctions. This is essential for
solving partial differential equations through the separation of variables. The Sturm-Liouville theory
is fundamental in understanding and solving linear differential equations with boundary conditions and
serves as a bridge between pure and applied mathematics. The article explores the application of
exponential series based on the spectral parameter to solve eigenvalue problems of Sturm-Liouville
operators. A novel approach for decomposing the characteristic determinant into exponential series
is proposed, demonstrating effectiveness in computing large eigenvalues. The asymptotic formulas for
eigenvalues and eigenfunctions support the theoretical framework. Practical methods for achieving
higher computational precision are also discussed. The work is based on an extension of earlier methods

and offers new perspectives for numerical analysis in mathematical physics.

Keywords. Sturm-Liouville operator, spectral analysis, exponential series.

1 Introduction

In the paper [6], a method for decomposition into power series by the spectral parameter
was proposed, which turned out to be effective for the numerical determination of the eigen-
values of the Sturm-Liouville operator. The problem of computing the eigenvalues of the
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Application of the Method of Decomposition. . . 7

Sturm-Liouville operator reduces to finding the zeros of the so-called characteristic deter-
minant A(X). The characteristic determinant of the Sturm-Liouville operator represents an
entire function of the spectral parameter A\. Thus, the characteristic determinant A(\) is
decomposed into a power series by the spectral parameter A with an infinite radius of conver-
gence. In the paper [6], a simple method for finding the Taylor coefficients was provided. It
turned out that the recurrence formulas for determining the Taylor coefficients give a simple
and powerful method for numerically computing the eigenvalues. However, this approach is
effective for calculating relatively small eigenvalues. For very large eigenvalues, the method
proposed in [6] is not exactly ineffective, but for finding such eigenvalues, it is advisable to use
exponential series by the spectral parameter. The exponential series we propose are effective
for calculating sufficiently large eigenvalues in terms of magnitude. Exponential Series by the
Spectral Parameter for the Sturm-Liouville Equation on a Segment.

The spectral properties of Sturm-Liouville operators have been analyzed in numerous
studies. In particular, the works of Bondarenko [2], [3] investigate inverse problems for Sturm-
Liouville operators, analyzing the sufficiency of information regarding the potential coefficients
of the operator. Additionally, the studies by Law and Pivovarchik [4] on characteristic func-
tions in quantum graphs are closely related to Sturm-Liouville theory. In this context, the
works of Carlson and Pivovarchik [5] examine the spectral asymptotics of quantum graphs,
investigating the fundamental conditions and regularities affecting the distribution of the
operator’s eigenvalues. Furthermore, a comprehensive review of quantum graphs and their
applications is provided in the works of Berkolaiko, Carlson, Fulling, and Kuchment [7|. These
studies contribute to the improvement of spectral analysis methods and enhance the under-
standing of their application in various operator systems. In this regard, the effectiveness of
the proposed method is examined in comparison with the spectral characteristics of graphs,
aiming to improve its capability in computing sufficiently large eigenvalues and to expand its
applicability to other spectral problems.

2 Exponential Series by the Spectral Parameter for the Sturm-Liouville Equa-
tion on a Segment

Let us consider a second-order linear ordinary differential equation on a segment
" +q(x)y =Xy, 0<z<b. (1)

Such equations are called Sturm-Liouville equations. The coefficient g(x) is often referred
to as the potential. The conditions that the potential satisfies will be specified depending
on the problem under study. The complex number A plays the role of a spectral parameter.
Often, instead of the parameter ), it is convenient to use the parameter p, such that p? = \.

Assume that A is a complex number. Let ¢(z, p) denote the solution of the homogeneous

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 6—15



8 Baltabek E. Kanguzhin, Zhamshid Zh. Khuzhakhmetov

equation (1), subjected to the Cauchy conditions at = = b.

So(bvp) =1, 90/(67 p) =h, (2)

where h is some complex constant.
According to the results of the monograph [1], the solution ¢(b, p) is the solution of the
integral equation:

b
sinp(z —b sin p(x — b
p(z,p) =cosp(z—b) + hp(p) + / p(p)q(t)SO(t,p)dt-
We define:
i —b
po(z,p) = cosp(z —b) + hsmf)(j)-
Let us assume:
b
sinp(x — b
on(z,p) = / ;)Q(t)@nl(tap)dt- (3)

T

In the monograph [1], it was proven that the series >~ ¢k (z, p) converges uniformly in
A for |[A\| < N and uniformly for x € [0;b]. Here, N is an arbitrary positive number. Thus,
the function ¢(z, p) is an entire function of the parameter p?.

For further purposes, it is convenient to obtain the exponential representation for ¢, (x, p).
From relation (3), for a fixed natural n, we have the following equality:

tn+1 t3

1 P
On(tnt1, A) = (\/X)n / dtn"'b/dth/dtlil;[lqai)'

b

: Hsin VAtig1 — ;) |:COS VAt —b) + gsin(tl -b|, n=12,...

i=1

where t, 11 = .

Let I, denote an n-dimensional unit parallelepiped, whose vertices are of the form ¢ =
(0, €2, €3, ..., ). Here, the values of &; (for i = 1,n) can be either zero or one. Let a fixed
vertex € € I, then let My denote the number of equal neighboring coordinate pairs. In other
words,

My =card{3ie [1,n]NN:g; =¢e;y1}.

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 6-15



Application of the Method of Decomposition. . . 9

Using the identity

H sin \/X (tiJrl - ti) =
=1

2k—1

4
47k Z ( )k 1-%—2:25’C 1153 s1n\/>z t2+1 t; ), —er:Qk_l’
_ , (Oe1e2...e25—1)€lap—1 (4)
I Z (—1 )k+Zs 185 cog )‘Z (tin — t), n— %k,
(Og1e2...clak)elay i=1

For n = 2k — 1 and n = 2k, from equation (4), we derive the required exponential
representations. To do this, we introduce the quantities for n = 2k — 1:

iy = (02 (b a[ 2] - an) ) (2 (- a[22]) 1)
(2 et a[ 2 os (2 (ka [22] - 20) )

iy = (v (ka [%] - 0a) Yo (5 (-4 [22]) 1)
(v -a (1o a[ 2] o (2 a[ 2] - 2a) 1),

max Tl(?k—l) =

max TQ(Qk:—l) =
for n = 2k:

min Ti(2k) =

(reren(ema ) ) o= (o (a5 a0) 1)
sy = (o (ko1 a 2] o)) o (k0 [2]) 1)

(o (emal ) om (e a[] -20) 1)
Max To(g) = <—(—1)52’“‘1—2< —1—|—A[ } ))x < (k: A[%ﬂ)—i—l)b.

Lemma 1. Let k be a fived natural number. Then there exist continuous functions with
respect to T, A%gk_l)(x,ﬁ(gk_l), b), Aé\{gk—l) ($,TQ(2k_1), b) , Bop_1(x) such that the following

min Ty =

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 6—15



10 Baltabek E. Kanguzhin, Zhamshid Zh. Khuzhakhmetov

exponential representation holds:

1 2k—-1 max 7y
(2k—1)
M .
Par—1(, p) E E CQkOQ R / A1(or—1)(®, Tr(2r-1), b) SN pTy (28 —1)dT1 (28— 1)
€Ek—1— OMO 1’Il11’1T1<2k_1)

1 maXT2<2k 1) '
- p2k—1/ Ay g1 1) (@, Ta(2-1), b) sin pTa(2p,—1)dTa(21-1)
min 725 1)

h max To(2k—1) v
+ gk/ Ay o1y (@ Ta(2k-1), b) €O8 pTo(ak—1) dTo(2k-1)
p 1'1111'17'2(2]’6,1)

h max 7y (2k—1) Y
- pgk/ Al 1) (@5 T1(21-1), b) €08 pT1 (28— 1)dT1 (26-1)
min 7y (g _1)

1 i 1 z=b i
+ P —n—1 Bak— 1(z) sinp(z —b) — pzk_l/bx A%’&k 1)(55772(21671),5) Sin pTo(2k—1)dT2(26—1)

h h z—b
- WBZIC—I(‘T) cos p(z —b) + W ) AS’&,} 1)(507 T2(2k—1)» b) cos p7'2(2k71)d7'2(2k71)-
—X
Lemma 2. Let k be a fired natural number. Then there exist continuous functions with
respect to T, A%gk (T, T1(2k), b), Ag{gk) (:c, To(2k)> b) , Bog(x), such that the following exponential
representation holds:

1 2k—3

par(z,p) = Z Z C%()—l

€2k—1=0 Mo=0

1 MarTy (2k)
p%/ . A 2) (z, T1(2k)> b) cos PT1(2k) A1 (2k)

mzn’rl(gk)

1 MarTy(2k) Mo
+ ka/ Ay ory (45 Ta(2k), b) €OS pTo(2k) dTo (21

MINTy(2k)

h maxTQ(Qk) .
+ 7[)2;{“ / ‘ Aé‘@k) (m, T2(2k)> b) sin PTz(zk)de(zk)

MINTY(2k)
h MmarTy (2k) M ]
—2k+1/4 Al(gk)(37771(2k)ab)SmPT1(2k)dT1(2k)
p mzn‘rl(%)

1 r—b
ﬁ A A%ék;—l) (z, T2(2k)s b) cos PT2(2k)AT2(2k)

h z=b .
W \ A2(2k 1)($ 7—2(2k)ab) Slinz(zk)d7'2(2k)-

—X

1

+ WB%($) cos p(z — b) —
h .

+ e ——Bop(z)sinp(x — b) +

Using Lemmas 1 and 2, the required solution of Problem (1)-(2) can be written as an
exponential series in terms of the spectral parameter.

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 6-15



Application of the Method of Decomposition. . . 11

Theorem 3. Let q € Cla,b]. Then, for any complex X\, the solution to the problem (1)-(2)
exists and is unique, and moreover, the following representation is valid:

o(x, p) =cos p(x — b) + ;(h + By (z))sin(z — b)
1 z—b

- - A%?)(CE, 723, b) sin p7'23d7'23
P Jb—z

— Z { (Bag(z) — hBojy1(z)) cos p(x — b)

.4 B3 maeno
+ =z Z Z Czko_1/' As(ok+1) (T, To(ar41), b) €08 pT1(2k—1)dT1 (2K 41)

p g91,—1=0 \ Mp=0 MANTy(2k—1)

2k—2 mazTQ(gk)
- Z C’%‘ll/' A%Sk)(%ﬁ(zk),b) COS PTo(2k) ATo(2k)
M0:0 mznTg(%)

z—b
+h /bz AQI(CZJL 1)(1’, To(2k—1) D) €COS pTa(ok—1)dTo(2k—1)
r—b
+ b Agék—l) (JZ, T2(2k)» b) COS PTa(2k) dTQ(Qk)
1 .
+ W(B%H(IE) + hBo(x)) sin p(x — b)

1

1
+pzk+12<

€2k—1=0

2k—3 maa:Tl(%,l)

Z C%Oz/ A 2k41) (T Tr2k41), D) SIN T (2041)AT1 (2841)

TMANT] (25 —1)

23 MATT(2k+1)

- Z Cé\i/?—g/ A%§k+1)(ma7—2(2k;+1)ab) sin pTo(2k+1)AT2(2k+1)
Mo=0

mz’m—2<2k+1)

2k—2 maxrTy(2k)

+ Z 0%0—1/ Aé‘/(jgk)(ﬂcﬁz(zk),b) sin pTo(ok) dTo(2k)

MINTy (2k)

2k—2 MaxTy(2k)

+h > Cé‘,?_l/

M[):O mi'm’l(gk)

Ai\(@k) (2, T1(2), b) Sin pTy (28, d71(2k)>

x—b
- /b A2](€2_k+1) (@, T2(2k+1), b) SIN PTo(2k41) ATo(2141)

z—b
+ h A%]&k*l) (.’L’, 7—2(2k)7 b) sin pTQ(Qk)dTQ(Qk) } .

b—x
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3 Asymptotic formulas for eigenvalues and eigenfunctions

Now we derive the asymptotic formulas for eigenvalues and eigenfunctions. From these for-
mulas, in particular, it follows that an infinite set of eigenvalues exists.

We still assume at the beginning that h # oo and H # oo. For any A, the function
¢ (x, ) obviously satisfies the first boundary condition (1)—(2). Therefore, we will determine
the eigenvalues if we substitute the function ¢ (x, ) into the second boundary condition.

According to Lemma 1-2 from [1], the eigenvalues are real, i.e. Imp = 0. Therefore, we
estimate the series (5) as follows:

1 1 z—b
o (z, p) = cosp (x — b)—i—; (h+ By (x)) sinp (x — b) - / ALy (2,793, b) sinprdT +£1. (5)
b—zx

Next, differentiating equation (5’) with respect to x and using the estimate (5’), it is easy to
obtain the following estimate:

sin p7

¢4 (x, p) =psinp(z — b) + (h + Bi(x)) cos p(z — b) — Ags(w, 723,b)
(6)

sin pT

1 xT
+/ A%3(:U,T23,b)z dr +&;1.
P Jby
Now, substituting the values of the functions ¢(z, p) and ¢’ (x, p) from estimates (5) and
(6) into the second boundary condition (2), we obtain the following equation for determining
the eigenvalues:

sin pr sin p7

b
cos pb — (h + Bi(x)) —|—/ Aég(O,ng,b) dr+& =0
P —b (7)
p—00: cospb=0, pp= %(Qm—i—l), m € Z.

We look for the root in the form p = 3 (2m + 1) + §(m), m € Z. Then from equation
(7), we have the following relationship:

™

S (2m+ 1)+ 5)_1 sin (g@m +1)+ b5)

cos (g(Qm +1)+ b5> — (h+ B1(0)) (

b T -1 s
+/ Aj3(0,793,b) (=-(2m + 1) +6) sin(-(2m+1)+b5)dr+& =0
. 23( 23 )<2b< ) > (2( ) ) '

or
s

(~1)y™ U sinbs + (—1)™ L+ By (0) (5 (2m+ 1)+ 5)_1 cos S

™

b -1
+ (—1)m/bA§3(o,T23,b) (Qb(2m+ 1) +5) cos bddr + & = 0
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From this, as m — oo, we get the limiting relation
lim sinbd(m) =0,
m—0o0
which is equivalent to the following equality:
lim_g(m) =0 (9)

From the relation (8), taking into account the limiting equality (9), we have

T -1
(—1)m+1 sin bo + (—1)m+1 (h+ B1(0)) (%(Qm +1)+ 5) cos bd
b T 1
+ (—1)m/ A%3(0,723, b) (2—b(2m +1)+ 5) cosbddr +& =0
b

Thus, we find an approximate value of ¢ (m). This process of refining the root computation
can continue to the desired level of accuracy. Therefore, the obtained approximate value can
be used as a solution with the required accuracy. Continuing the process of refining the root
computation, we can achieve even greater accuracy.
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Kanryxun B.E., Xyxkaxmeros 7K. 7K. CIIEKTPAJIBJIBIK ITAPAMETP BONBIHIIIA
SOKCITOHEHIMAJIIBI KATAP/TAPTA 2KIKTEY 9J1ICIH MEHIIIKTI MOHIEP ECEII-
TEPIHIE KOJIIAHY

Irypm-JIuysuin oneparopsl mnuddepeHuaaiblk TeHIeyaep TeOPUIChIHIA, MaTeMATU-
KaJIbIK, (PU3nKaIa KoHe KOJIAHOAIBI MaTeMAaTHKaIa OPTAJIBLIK peJl aTKapasabl. bym omepa-
top HIrypm-JIuyBuit ecebinie TybIHIANIBI, OJ KAPACTBIPBLIBINT OThIpFaH quddepeHnaIbK,
TeH/ey YIIiH MeHITKTI MoH ecebi 60l Tabbutaabt. [Typm-JluyBuiume oneparopbl MEHITIK-
Ti MOHIEP MEH CoifKeC MEHIIKTI (byHKIMSIIAPIbIH, CIEKTPIH Kacaiiapl. By afiHbIMabLIAD-
bl 661y apKbLIbI Jepbec muddepeHnuaiiblK, TeHaeyaepai Imenry yirin ere kaxer. [rypm-
JInyBHII TEOPHUSACHI MIEKAPAJIbIK, IIAPTTAPhI Oap CHI3BIKTHIK, 1M depeHTuaIIbIK, TeHIeyIePIi
TYCiHY 2KOHE IIenTy YIIiH Heri3 OOJIbII TabbLIaIbl KOHE Ta3a MATEeMATHKA MEH KOJIIAHOAJIBI
MaTeMaTUKa apaChIHIAFbl KOITP KbI3METIH aTKaAPaIbl.

By makamaga [HlTypm-JIuyBuiis oneparop/iapbiHblH, MEHIMKTI MOHJEP ecebiH mremnty
VIIH CHEeKTPJIK HapamMeTp OONBIHINE SKCIIOHEHIIUAIIBI KATapJIap/ibl KOJJIAHY KapacThIPbLIa-
Jbl. CHmaTTaMaJlIblK, AaHBIKTAYBIIIBI SKCIIOHEHIIMAJI Bl KaTapJapra XKIiKTeyIiH *KaHa TOCLIl yChI-
HBUIBIN, YJIKEH MEHIIIKTI MOHEP/Ii ecenTeye THIMIUIT KepceTiieni. MeHmmikTi MoHIep MeH
MEHINKTI PYHKIUAIAD YIIH aCUMITOTUKAJIBIK, (DOPMyJIaaap TEOPUSIbIK, HETi3/Mi pacTaliIibl.
Conpaii-aK, ecenrey IoJIIITH apTTBIPYILIH MPAKTUKAJIBIK, 9IicTepl TajakblLIaHagbl. 2KyMbIc
OYPBIHFBI DIICTEP/IiH, KeHeHTLIyiHe Heri3e/reH *KoHe MaTeMATUKAJIBIK, (PU3NKAIAFbl CAHJIBIK,
TaJiay YIIiH »KaHa Ke3KapacTap YChIHAJIHI.

Tyiiin cezaep: [Itypm-JIuyBuiis omepaTopsl, CIEKTPJIIK TaJIay, SKCIOHEHITHAJTHI KA~
Tapiap.

Kanryxwun B.E., Xyxaxmeros 2K.2K. IPUMEHEHUE METO/IA PA3JIOZKEHUA B
9KCIHOHEHUMAJIBHBIE PAIBI 110 CITEKTPAJIBHOMY ITAPAMETPY B 3A/TAYAX
HA COBCTBEHHBIE SBHAYEHU A

Omneparop IIrypma-JIuyBuiist urpaer MeHTPAJBHYIO POJIb B Teopuu JuddepeHIuaib-
HBIX YPaBHEHUM, MaTeMaTUIecKoil (hU3NKe U MPUKJIAJIHON MaTeMATHKe. DTOT OIEPATOD BO3-
nukaet B 3agade [rypma-JluyBuiis, koTopas sBiseTcs 3ajadeil Ha COOCTBEHHbIE 3HAYECHUS
JUIsT paccMaTpuBaemoro auddepennuaabaoro ypasaenusi. Oneparop Lrypma-JInysuinis re-
HEPUPYET CIEKTDP COOCTBEHHBIX 3HAYEHUIT U COOTBETCTBYIONIUX COOCTBEHHBIX (DYHKIMA. DTO
HEeOOXOIMMO JIJIsI PEIIeHnsl yPABHEHNH B 9aCTHBIX TPOU3BOIHBIX ITyTEM Pa3/Ie/ICHUS ITepEeMeH-
wbix. Teopus [Irypma-JInyBuiuist siBjisieTcss OCHOBOIIOIATAIOIIEH JIJisi TOHUMAHUS W PEICHUS
JIMHEHHBIX 1uddepeHInaIbHbIX YPABHEHNN C IPAHUYHBIMU YCIOBUSAMHU U CJIY?KUT MOCTOM
MEXKJIy YUCTON U NPUKJIAJHON MaTeMaTUKOMN.

B mammoii craTbe uccienyercs mpuMeHeHe SKCIOHEHITUAIBHBIX PSIJIOB 110 CHEKTPAJIHLHOMY
rmapaMeTpy s peleHus 3a1ad Ha coOOCTBeHHbIe 3HavueHus oneparopos [Itypma-JluyBuiis.
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[Tpenaraercs HOBBIN MOIXO/ K PA3JIOXKEHHUIO XapaKTEPUCTUIECKOTO OMPEIEUTENST B IKCIIO-
HEHIIMAJIbHBIE PsiJIbI, JEMOHCTPUPYIOMN 3(PHEKTUBHOCTS MPHU BBIYUCIECHUN OOJIBIIUX COO-
CTBEHHBIX 3HaYeHMit. AcuMrrorundeckue (GOPMYJIbl JJisi COOCTBEHHBIX 3HAYEHMI U COOCTBEH-
HBIX (DYHKIMI MOATBEPXKIAIOT TEOPETUIECKYIO OCHOBY. TakyKe 00CYXKIAI0TCA IPAKTHIECKIE
MEeTObI JOCTUXKEHNsT 00Jiee BBICOKOI BBIMUCINTENIBHON TOUHOCTU. Pabora ocHOBaHa Ha pac-
mupeHun 60j1ee PAHHIX METOIOB U IIPejIaraeT HOBbIE IEPCIEKTUBDI JJIsl YNCJIEHHOIO aHAIN3a
B MaTeMaTHIecKoi pusuke.

Kurouesbie caoBa: oneparop Illtypma-JluyBuiis, crieKTpaabHBIN aHAIN3, SKCIIOHEH-
UAJIbHBIE PSIIBI.
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Abstract. In this article, we consider the periodic problem for the impulsive hyperbolic equation with
discrete memory. Impulsive hyperbolic equations with discrete memory arise as a mathematical model for
describing physical processes in the neural networks, discontinuous dynamical systems, hybrid systems,
and etc. Questions of the existence and construction of solutions to periodic problems for impulsive
hyperbolic equations with discrete memory remain important issues in the theory of discontinuous par-
tial differential equations. To find the solvability conditions of this problem we apply Dzhumabaev's
parametrization method. The coefficient conditions for the existence and uniqueness of the periodic
problem for the impulsive hyperbolic equation with discrete memory are established. We offer an algo-
rithm for determining the approximate solution to this problem and show its convergence to the exact

solution of the periodic problem for the impulsive hyperbolic equation with discrete memory.

Keywords. hyperbolic equation, impulse effects, periodic condition, discrete memory, partition of do-

main, problem with parameters, solvability conditions.

1 Introduction

On the domain Q = [0, T x [0, w] we consider the periodic problem for the impulsive hyperbolic
equation with discrete memory in the following form

Pu ou(t, x) ou(y(t), x) ou(t, x)
ooz~ AT g, oz ot

t£0;, j=1,N—1,

+ Aolt, z) + B(t, ) + O w)ult, x) + f(t,x), (1)
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Solution to the periodic problem for the impulsive hyperbolic equation. . . 17

u(0,z) = u(T, x), z € [0,w], (2)
ti%lgl+0u(t,x) - tﬁli@rﬁou(t,w) = pp(z), zxe0w], p=1,N—1, (3)
u(t,0) = (1), te[0,T], (4)

where u(t, z) is unknown function, the functions A(¢, x), B(t,z), C(t,z), Ao(t,x) and n vector
function f(¢,z) are continuous on €,

v(t) = (s if t € [05-1,05), s=1,N;

Os_1 < Cs < 0, for all s = 1,2,...,N; 0= Op <61 <..<0Ony_1<0n =T,
the functions ¢p(z) are continuously differentiable on [0,w], p = 1, N — 1; the function (¢)
is continuously differentiable on [0, 7] and satisfies the compatibility condition: 1(0) = ¢(T).
We introduce the notation
N
Oy = [05-1,05) x [0,0], s=1,N, ie. = Q.

s=1

Let PC(12, {Hj}éy;ll, R) be the space of piecewise continuous on 2 functions u(¢, x) with
possible discontinuities on lines t = 6;, j = 1, N — 1, and the norm

lulh = max sup |u(t, z)|.
s=L,N (t,x)€Qs

A function u(t, z) € PC(, {Hj}jy:_ll, R) is a solution to problem (1)—(4) if:

(1) wu(t,z) has partial derivatives

ou(t, )
Ox

e PO@, (6;))5 ®), 202

j=1 "1 € PC(2,{6;};5,", R);

j:l 9

2
(ii) the mixed partial derivative a;ti(atf) exists at each point (t,2) € Q with the possible

exception of the points (6s-1,x), s = 1, N, for all x € [0,w], where the one-sided mixed
partial derivatives exist;

(iii) hyperbolic equation (1) is satisfied for w(¢,x) on each subdomain (6s_1,6s) x [0,w],
s = 1, N, and it holds for the right mixed partial derivative of u(t,z) at the points
(Os—1,2), s=1,N, z€]0,w];

(iv) periodic condition (2) and initial condition (4) are satisfied for u(t,z) at the lines ¢ = 0,
t =T, and z = 0, respectively;
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18 Anar T. Assanova, Altynai Molybaikyzy

(v) the conditions of the impulse effects (3) are satisfied for w(t,z) at the lines t = 6,

p=1,N—-1, 2 € [0,w].

Differential equations with discrete memory (or generalized piecewise constant argument)
are more suitable for modeling and solving various application problems, including areas
of neural networks, discontinuous dynamical systems, biological and medical models, etc.
[1, 2, 3,4, 5,6, 7|

Questions of solvability and construction of solutions to boundary value problems for
differential and hyperbolic equations with generalized piecewise constant argument on a finite
interval were studied in 8, 9, 10, 11].

For impulsive partial differential equations with discrete memory, however, the questions
of solvability of boundary value problems on a finite interval still remain open [12].

This issue can be resolved by developing constructive methods.

The non-local problem for a system of hyperbolic equations with impulse discrete memory
were considered in [13]. Conditions for the existence and uniqueness solution to the non-local
problem for a system of hyperbolic equations with impulse discrete memory were established
in the term of special matrix composed by coefficient matrices and boundary matrices.

In the present paper, we propose a new approach for solving periodic problems for the
impulsive hyperbolic equation with discrete memory (1)—(4) based on the introduction of new
functions and on Dzhumabaev’s parametrization method [14].

2 Introduction of new functions and algorithm of Dzhumabaev’s parametrization
method
First, we introduce new functions v(t,z) = %7 w(t,z) = augt’x).
We have a periodic problem for a family of impulsive differential equations with discrete
memory in the next form

‘z;; = A(t, z)v(t, x) + Ao(t, 2)v(v(t), ) + f(t,2) + B(t,2)w(t, z) + C(t, z)u(t,z), (5)
t#6;,, j=1,N—1,
v(0,z) = o(T, z), z € [0,w], (6)
t_l>i6rpn+ov(t,x) - t_l)ier;l_ov(tw) = ¢p(x), re0w], p=1N—1, (7)
uta) =60+ [oe.9de, witw) =i+ [P0 ae ©
0 0

(t,z) € Qq, s=1,N.
A triple of functions {v(¢,z),u(t,x),w(t,z)} is a solution to the problem for the family
of impulsive differential equations with discrete memory (5)—(8) if:
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(i) the function v(t,z) € PC(Q, {9j}§v:—117R) has partial derivative

Ju(t, x)
ot

€ PC(Q,{0;}1,', R);

(i) the family of the differential equations (5) is satisfied for v(¢,z), u(t,x) and w(t,z) on
each subdomain (6s_1,6s) x [0,w], s =1, N, and it holds for the right partial derivative
of v(t,z) by t at the points (6s—1,z), s=1,N, z € [0,w];

(iii) the periodic condition (6) is satisfied for v(¢,x) at the lines t =0 and t =T

(iv) the functions u(t,z) and w(t,x) are connected with v(¢,x) and % by the integral
equations (8).

(v) Denote by An(w) a partition of the domain € by lines ¢t = 0:

Qs =[05-1,05) x [0,w], s=1,N.

Let C(92, Ax(w), RY) be the space of functions systems
v([t], ) = (vi(t,z),ve(t, x), ..., on(t, 1)),
where v, : Q; — R are continuous and have finite left-hand side limits . liem Ovs(t,x) for all
—0s—

s=1,N, and z € [0,w] with the norm

[v([],2)ll2 = max  sup ||vs(¢, )]
s=LN te[0,_1,0,)

We denote by vs(t, ) the restriction of a function v(t,z) on the s-th subdomain Qs i.e.
vs(t,z) = v(t,x) for (t,x) € Qs, s=1,N.

Then the function system v([t],z) = (vi(t,x),va(t, z), ..., vn(t,x)) belongs to the space

C(9, Ay (w), RY), and its elements vs(t, z), s = 1, N, satisfy the following family of differential
equations with discrete memory

881;8 - A(tv :L')Us(t, '1') =+ AO(ta x)vs(g& x) + f(tv x) + B<t7 x)w(t7 x> + C(t’ x)u(t’ x)’ <9>
(t,z) € Qs, s=1,N,

v1(0,2) = tiijglovN(t,x), z € [0,w], (10)

Vpt1(0p, ) — t_l}iem_o vp(t, ) = pp(x), x € [0,w], p=1N—1, (11)

p
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xT x

u(t, z) = (t) + / valt, €)dE, w(t, x) = (1) + /

0 0

avs(ta 5)

T ¢, (t,z) e Qs, s=1,N. (12)

In (9) we take into account that ~(t) = (s for all t € [#s_1,605), s=1,N.
We introduce functional parameters in the next form: ps(x) = vs((s,x) for all s =1, N
and z € [0,w].

Making the substitution vUs(t,z) = vs(t,z) — ps(x), (t,z) € Qs, s = 1, N, we obtain a
problem with parameters for the family of differential equations in the following form

O0vs
ot

= A 2)T(t, ) + (A7) + Ao(t, 2) () + F(t2)+
+ B(t,x)w(t,x) + C(t,x)u(t,z), (t,x) € Qs, s=1,N, (13)

the initial conditions are

Us(Cs, ) = 0, x € [0, w], s=1,N, (14)
the periodic condition is
7171(071.) +M1((L’) :t})IYQOﬁN(t’ x) +MN(£C>7 YIS [O7w]7 (15)

the conditions with impulse effects

:Jp-l-l(ep:x) + Hp-f-l(x) - t_ljem_ogp(t)x) - :U’p(x) = pr(%), T e [O,W], b= 17 N — 17 (16)
p

and the integral equations

x x

u(t, z) = (t) + / Bt ) + pa(OE, it x) = (1) + /

0 0

s (t, §)

o

(t,z) € Qs, s=1,N. (17)
A solution to the problem with parameters (13)—(17) is called a quadruple

{o(lt], 2), (), ult, ), w(t, )},

with elements {vs(t, z), pus(z), u(t, ), w(t, =)}, where the functions v5(t, x) € C(Q, Ax(w),R)
have the derivative avsa(f’x) € C(2, Ay(w),R), the functional parameters us(x) € C([0,w],R),
s = 1, N, the functions u(t,z),w(t,z) € C(, Anx(w),R), and satisfies to the family of the
differential equations (13) for all (¢, ) € Qs, s = 1, NV, the initial conditions (14), the boundary

condition (15), the conditions with impulse effects (16) for all € [0,w]. The functions u(t, x)
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)

and w(t,z) are connected with v4(¢,x) and %
(t,z) € Qs, s=1,N.

At fixed ps(x), w(t,z), u(t,z) the problem (13)—(14) is a family of Cauchy problems for
differential equations.

by the integral equations (17) for all

¢
Let a(t,z) = /A(T,x)dT, (t,x) € Qs, s=1N.

Cs
A solution of the family Cauchy problems (13)—(14) is unique and has the next form

t t
ol (t, ) = e 47) / e TIA(T, @) + Ao(7, 2) s ) dr + e / e f(r, 2)dr+
Cs (s

¢
+ ea(m)/e—a(r,r) [B(T, z)w(t,z) + C(7, z)u(r, x)}dT, (t,z) € Qs, s=1,N. (18)
Cs

We introduce the following notations:

Dy(t,z) = ¢e*t®)
(s

¢
e~ AT, 2) + Ao(T, z)]dT,

¢

Hy(t,z,w,u) = &) [ 7o) {B(T, z)w(r,x) + C(r, z)u(r, x) | dr,

Fy(t,z) = &0 [ =)z 2)dr, (t,z) € ., 7 =1, N.

/
/

From the integral representation (18) we find

:(71(071')7 tiizr“rioﬁN(t’x)’ /ﬁp—l-l(ep?x)v t%lg;l in(twr)a p= 1aN - L

Substituting the found expressions into Relations (15) and (16), we obtain

[1+ D1(0,2)| () — [1+ Dn(T,2)| un(z) = —F1(0,3) + Fn (T, z)—
— Hi1(0,z,w,u) + Hy(T,z,w,u), z € [0,w], (19)

[1 + Dpy1(6p, x)]ﬂpﬂ(w) - [1 + Dy (0, w)},up(x) = p(x) + Fp(0p, ©) — Fpi1(6p, )+

+ Hp(gp,.iU,’UJ,U) - Hp+1(9p7x7w7u)7 b= LN - 17 HAS [07(")]‘ (20)
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Using the coefficients for ps(x), s = 1, N, on the left-hand sides of the system of the
equations (19), (20), we compose an N x N matrix Q(z) in the following form:

14 D:(0,2) 0 0 0 —1- Dn(T, z)
—1—=D1(01,z) 14 D2(0:1,x) 0 0 0
a@=| g TR LRGN 8 8
0 0 0 1= Dno(On-1,8) 1+ Dn(0xn-1,2)
Let us write down the system of the equations (19)—(20) in the next form:
Q(z)u(x) = —Fy(z) — Hy(z,w, u), z € [0,w], (21)

where the N vector functions Fi(An(w), z), Hi(An(w),x, w,u) have the forms

Fo(z) = (Fl(O,:U) — Fn(T, ), —p1(x) — Fi(61,2) + Fa(61,2), ...,

—on-1(z) = Fy—1(On-1,2) + FN(ONn—1, 37)>,

H*(x,w,u) = (Hl((),.r,w,u) - HN(T,.’L‘,U/,U), —Hl(el,lb,w,'lt) +H2(91,m,w,u), s

— Hy-1(On-1,7,w,u) + Hy(ON-1, OC,UJ,U))-

3 Algorithm and Main result

If the functions w(t, z) and u(t, z) are known for all (¢, z) € Q;, s = 1, N, then from the system
of functional equations (21) we find u(z) with components us(x) € C([0,w],R), s = 1, N.
Then from the integral representation (18) and the differential equations (13), we define
Us(t, ) and its derivative 885; for all (t,z) € Q5, s=1,N.

Conversely, if vs(t, ), 885;’ and ps(z) € C([0,w],R) are known for all (¢,z) € Qs, where
s = 1, N, then from the integral equations (17) we can find the functions u(t,x), w(t, z) for
all (t,z) € Q5, s=1,N.

Since the function vs(t,x) and its derivative agts, the functions u(t,z), w(t,z) and the
functional parameters ps(x), s = 1, N, are unknown together, we use the iteration method to
find a solution to the problem (13)—(17).

We determine a quadruple

{0 ([t], ), ™ (), w'(t, x), w"(t,2)},
with elements {07 (¢, z), pi(x), u*(t,x), w*(t,x)}, as a limit of sequence of quadruples

@0 ([t],2), 1 (@), P (t2), wP(t )},
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with elements {5§k> (t,x), ,ugk) (z), u® (t, ), w*) (t,2)},s = 1,N, k = 0,1,2, ... by the following
algorithm:

Step 0. Assume that the (N x N) matrix Q(z) is invertible for all z € [0, w].

1) Putting u(t,xz) = ¥(t), w(t,z) = 1(t) on the right-hand side of system (21), we
define initial approximation of functional parameter pu(9(z) = ( go) (x), ug)) (), ..., ug\?) (x))

with components ugo) (x) € C([0,w],R) from the system of functional equations

Q(.T)M(l‘) = _F*(x) - H*($a¢,¢), T e [va]‘
2) Assuming on the right-hand side of the family of the differential equations (13) that
ult,z) = (b)), w(t,z) = P(t), ps(x) = ,ugo)(x), s = 1, N, and solving the family of Cauchy
problems (13)—(14), we find 7 (t,x)

5§0)(t7$) :Ds(t,x)ﬂgo)(x)+F5(t,.%')+HS(t,[B,1/J,w), (tux) € QS: s = 17N7 (22>
and we determine its derivative

a9
ot

= A(t, z)00 (¢, 2) + [A(t, ) + Ag(t, )]0 (@) + f(t,2)+

+ B(t,z)y(t) + C(t,x)v(t), (t,x) € Qg s=1,N. (23)

3) From the integral equations (17) we define u(9 (¢, z) and w©) (¢, ) as follows:

[ . % a~(0)
WO (k) =60 + [FO€) + P(Elde, wO(t,a) = (o) + P8 g,
0 0
(t,x) €, s=1,N. (24)

Step 1. 1) Putting u(t, z) = u(9(t, ) and w(t, z) = w (¢, ) on the right-hand side of the
system (21), we define the first approximation of the functional parameter u(!(z) = ( gl)(:n),
ugl)(x), e ,ug\l,) ()) with components ,ugl)(m) € C([0,w],R) from the system of the functional
equations

Q(ZL‘)/.L(SL’) = _F*(:‘C) - H*(x’w(o)vu(()))a x € [O,UJ].
2) Assuming on the right-hand side of the family of the differential equations (13)

U(t, .’IJ) = U(O)(tax)v ’lU(t,.CL‘) = w(O)(ta J}), Ms(x) = Mgl)(x)v s=1,N

and solving the family of Cauchy problems (13)—(14), we find ﬁgl)(t, x):

W (t, 2) = Dy(t, 2)plD () + Fy(t,x) + Hy(t, 2, w0, u®),  (t,2) € Qs, s=T,N, (25)
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and we determine its derivative

oM

o = At )0 (8, ) + [A(t, 2) + Ao(t, )]V (2) + f(t, )+

+ B, 2)w O (¢, z) + O, 2)uO(t,z), (t,z) €Q, s=1,N. (26)

3) From the integral equations (17) we define u(Y (¢, z) and wM (¢, z) as follows:

T T

uV(t,2) = (1) + / B ) + uD©)de, wD(t,x) = h(t) + /

0 0
(t,x) € Qs, s=1,N. (27)

a8 (t, €)

at d£7

And so on.

Step k. 1) Putting u(t, z) = u* D (t, z) and w(t,z) = w*=D(t, ) on the right-hand side
of the system (21), we define the kth approximation of the functional parameter p*)(z) =
(,ugk) (x),ugk) (x), ...,,ug\];) (z)) with the components ugk) (z) € C(]0,w],R) from the system of

the functional equations
Q@)u(x) = —Fu(x) — Ha(w,w®D ulE=0), 2 € [0,0].

2) Assuming on the right-hand side of the family of the differential equations (13) that

u(t, z) = uFV(t, z), wit,z) =w* (¢t 2), ps(z) =pF(2), s=1,N,

and solving the family of Cauchy problems (13)—(14), we find Egl)(t, x)

W (¢, x) = Dy(t, )P (z) + Fi(t, 2) + Ho(t, 2, w* D o®D) (t,2) € Q,, s =1,N, (28)
and determine its derivative

~(F)
T = At 2) + [A(t2) + Aot D)) + (1, 2)

+ B(t, z)w* V(¢ 2) + Ct, 2)u*V(t,2), (t,z)eQ,, s=1,N. (29)

3) From the integral equations (17) we define u®) (¢, 2) and w® (¢, z) as follows:

f 1 ov®(t,¢)

u¥) (¢, 7) = p(t) + / B0 (¢, &) + p ()de,  wP(t,z) = (t) + / —a ©
3 0

(t,2) €Qy, s=T,N. (30)
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Here k. =1,2,...

The developed method allows us to find unknown functions in three stages:

1) From the system of the functional equations (21) we determine the introduced func-
tional parameters ps(z) for all x € [0,w], s =1, N.

2) From the family of Cauchy problems (13), (14) we find unknown functions vs(¢, 2) and
its derivative % for all (t,z) € Qs, s=1,N.

3) From the integral equations (17) we define u(t,z) and w(t,z) for all (t,z) € s,
s=1,N.

Each of the problems has a unique solution under assumptions about the initial data. To
implement the algorithm, it is necessary to establish the convergence of approximate solutions
to the exact solution of the problem with parameters (13)-(17).

We use the following notations:

a(r) = tg%%HA(t,w)H,
ap(z) = tg%g%HAo(t,x)H,

0 = max{ max (0, — (y—1), max (1 — 97«,1)}.
r=1,N r=1,N

The following theorem establishes conditions for the convergence of the proposed algo-
rithm and the existence of a unique solution to the problem with parameters (13)—-(17).

Theorem 1. Assume that the N x N matriz Q(x) is invertible for all x € [0,w]. Then the
problem with parameters (13)-(17) has a unique solution.

From the equivalent problems (1)—(4) and (13)—(17) we have the following.

Theorem 2. Assume that the N x N matriz Q(x) is invertible for all x € [0,w]. Then the
periodic problem for the impulsive hyperbolic equation with discrete memory (1)-(4) has a
unique solution.
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AcanoBa A. T., Momsibaiikpzbr A. JIMCKPET >KAJIBIJIBI UMITYJIbCTIK T'MITEP-
BOJIAJIBIK TEHJIEY YIIIH ITEPNOJATHI ECEITTIH HIEIIIMI

MaxkaJiajia TUCKPET KA IbLIbI HMITY/IbCTIK THIEPOO/IAIbIK TeH Y VIIIiH IEPUOITHI eCell Ka-
pacThIpbLIaIbL. JIMCKpeT KaIbLIbl UMITYJIbCTIK THIEPOOJIAIbIK, TeHIEYIep HeHPOHIBIK, YKeiaep-
Jeri, y3imicTi auHaMUKaJIBIK XKyiierepaeri, TuopuI sKyieaeperi koHe T.T. (pU3uKaJIbIK yaepicTep-
Ji cumnaTTayra apHaJFaH MaTeMaTHKAJIbIK MOJEIEp PeTiHe TYbIHIal bl JIucKpeT KaTblabl
UMITYJIBCTIK TUNEPOOJIAJIBIK TEHIEYJIED YIMH ITePUOITHI eCeIITepIiH, melriMaepinin 6ap 6oy
MEH Kypy Mocesesepi y3iiicTi mepbec TybIHABLIBI JudHepeHInaIbK, TeHIeyIep TeOPUIChHI-
HBIH, MaHBI3/IbI Moceseci 60JIbII Kasbll oThip. OChbl ecenTiH, MEeniaiMIiIiK IapTTapbiH Tady
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yuria JI>xymabaeBThIH ITapaMeTpJiey djici maiimaaanbiiaabl. JIMCKpeT »KaIbLIbl MMITYJIBCTIK
rurepOOoIAJIbIK, TEHEY YIIIH IePUOITHI €CENTiH mentiMiHiH 6ap O0JIYbl MEH YKAJIFbI3]IBIFBIHBIH,
K03 punmeHTTiK maprrapbl opHaTbLIFaH. OChl €CENTiH »KYBIK IIENIMIH aHBIKTAY aJINOPHUT-
Mi YCHIHBUIFAH KOHE JTUCKPET KaJIbLIBI UMITYJIbCTIK TUIEPOOJIAIbIK TEeH/IeY YIIMH MePUOITHI
€CETITIH, JI9JT TEeNTMiHe YKIHAKTHIIBIFBI KOPCETIINEH.

Tvyiiin ce3mep: rumepboJIalbIK TEHIEY, UMITYIbC 9Cepsepi, MepPUOATHI IAPT, AUCKPET
2KaJbl, 00JIBICTHI OOJIIKTEY, TapaMeTpJsiepi 6ap ecer, MemuIMIIK mapTTapbl.

Acanosa A. T., Moni6aiikessr A. PEIIIEHUE IIEPUOANYECKON 3AJAYN 115
NMITVJIBCHOT'O 'NITEPBOJIMYECKOI'O YPABHEHUA C JUCKPETHOI ITAMSI-
ThIO

B craThe paccmarpuBaeTcs mepuoAUUIecKast 3a/1a49a JIJisi KMIIYJIbCHOTO TUIIEPOOINIECKOI0
YPaBHEHUSI C IUCKPETHON MaMsThio. VIMITyIbcHbIe TUITEpOOTHIECKTEe YPABHEHUST C TUCKPETHOM
TaMSTHIO BO3SHUKAIOT KAK MATEMATHIECKUE MOJIE/IH, OMUCHIBAIONINE (PU3NIECKUE TPOIECCH B
HEHPOHHDBIX CETHAX, B PA3PLIBHBIX JUHAMUYIECKUX CHUCTEMaX, B TMOPUIHBIX CHUCTEMaX U T.JI.
Bompochl cymiecTBOBaHUS U TOCTPOEHUSI PEIIeHNs NEPUOAMIECKUX 33/1ad JJIsi UMITYJIbCHBIX
rurepOOINIeCKUX YPaBHEHUN C NUCKPETHON MaMSIThIO OCTAIOTCH BayKHBIMU IIPOOJIEMaMU TEO-
pun pa3pbIBHBIX Jud depeHnnaabHbIX YPABHEHUN B YACTHBIX TPOU3BOIHBIX. [l HAX0XK IeHUS
YCJOBUIT Pa3pEeIuMOCTH 3TOH 3aJadu UCHOJb3YyeTCs MeToJ rnapamerpusanuu J2xymabaeBa.
Vcranossennbl KO3GDUIUEHTHBIE YCJIOBUS CYIECTBOBAHUS U €IMHCTBEHHOCTH PEIEHUS [I€PHU-
OJINYECKO JIJIsT UMITYJIbCHOTO TUIEPOOIMIeCKOr0 YpaBHEHUs C JIMCKPETHON naMmsaThio. [1pe-
JIOZKEH AJIPOPUTM IS OIIPEJIeJIEHUs] TPUOJIMAKEHHOTO DeIlleHns JAHHON 3a/lad9d U [TOKa3aHa
CXOJIUMOCTb K TOYHOMY PEIIEHUI0 IEPUOIMIECKON 33 1a9u JJIsi UMITYJILCHOT'O TUIIEPOOTUIECKO-
IO ypaBHEHUS C JUCKPETHON MaMSTHIO.

KuroueBbie ciioBa: rutepbo/intieckoe ypaBHEHUE, UMITYJIbCHBIE BO3ICHCTBUsI, TIEPUOIU-
YeCcKOe YCJIOBUE, JCKPeTHAs NaMsTh, JieJieHre 00/1acTh, 3a/1ada ¢ apaMeTpaMu, YCJIOBUS Pa3-
PEeIIMOCTH.
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Abstract. We consider boundary value problems of thermal conductivity on a linear thermal graph, which
can be used to study various structures under conditions of thermal heating (cooling). Here, based on the
generalized function method, a unified technique has been developed for solving boundary value problems
of thermal conductivity, typical for engineering applications. Generalized solutions to nonstationary and
stationary boundary value problems of heat conduction on an edge and on a thermal linear graph
are constructed under various boundary conditions at the ends of the graph and generalized Kirchhoff
conditions at its node. Using the properties of the Fourier transformant of the fundamental solution,
regular integral representations of solutions to boundary value problems are obtained in analytical form.
The solutions obtained make it possible to simulate heat sources of various types, including using singular
generalized functions. The method of generalized functions presented here makes it possible to solve a
wide class of boundary value problems with local and connected boundary conditions at the ends of the

edges of the graph and different transmission conditions at its nodes.

Keywords. Thermal conductivity, generalized functions, fundamental and generalized solution, Fourier

transform, resolving boundary equations, linear graph.

1 Introduction

Graph theory has wide applications in subjects such as economics, logistics, sociology, opti-
mal control, and navigation [1-2]. The properties of graphs are also actively used to solve
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boundary value problems (BVPs) on network-like structures, e.g., oil pipelines, gas pipelines,
and electrical networks [3-10]. With the development of mechanical engineering, complex
multi-link rod structures operating under various thermal conditions began to be actively
used. They are widely used in structural mechanics, mechanical engineering, robotics, and
many other fields.

Mathematical modeling of the thermodynamics of rod structures and the creation of
information technologies based on it is one of the more effective and inexpensive methods for
researching and designing such systems. An urgent scientific and technical task is to study the
thermal state of network systems for various purposes under thermal influences, taking into
account their construction and thermal influences, including impact types. This is necessary
to analyze the strength and reliability of such objects, determine safe operating modes, and
prevent disasters.

Here boundary value problems are considered on the linear multilink thermal graph (Fig.
1), which can be used to study various mesh structures under conditions of volume and thermal
heating (cooling).

The novelty of the present work lies in the fact that a generalized function method is used
to solve boundary value problems, leading to a differential equation solution with a singular
right-hand side [11]. The solution is constructed as the convolution of the Green’s function
of the equation with the appropriate right-hand side. To determine the unknown boundary
values of the solution and its derivatives on each segment, resolving boundary equations
are constructed at the ends, employing the asymptotic properties of Green’s function and its
derivative at zero. To construct a closed system of equations, the obtained algebraic equations
for each edge of the graph are supplemented with transmission conditions at the node and
linear boundary conditions at its ends. These conditions can be either locally or not locally
connected.

A resolving system of equations in the space of Fourier transforms over time and Fourier
transforms of temperature on each link of the graph are constructed, which give a solution
to stationary boundary value problems with oscillations with a fixed frequency. The inverse
Fourier transform is used to construct the original. The obtained solutions give analytical
formulas for calculating the temperature of such structures under thermal heating conditions,
and can be used in the design of heating networks, as well as for solving boundary value
problems in environments stratified by thermal graphs.

2 Statement of the boundary value problem on thermal linear graphs
We consider a thermal linear graph which contains N edges (A;_1, A;) of the length L;, where

j=1,2,...,N (Fig. 1). On each edge S; = {:c ER':0<z < Lj} there is its own coordinate
system (x;,t) with the origin at the point A;_1, that is, ; = 0 at A;_; and ; = L; at A;.
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The temperature 6;(z,t) satisfies the heat conduction equation at S;:

08; 9%

ﬁ—ﬂaw:ﬂ(%ﬂ- (1)

Here £; is the thermal diffusivity coefficient on the j-th segment, Fj(x,t) describes the action
of the heat source, 6 (t) and 65(t) are the temperatures at the ends of the j-th edge.

u u u.

Al A A A

A\

Figure 1. Linear graphs

The initial conditions at t = 0 for the temperature of a graph are known:
auchy conditions
Cauchy diti

0;(z,0) = 6¢’(x), 0<x<L; t=0, (2)
0,(0) = 6o, (3)
where 0y’ (z) € C%(R.) for each j. Here we consider the two boundary value problems (BVP),

R ={t€[0,00)}
Dirichlet conditions (BVP1). Temperature values are known at the ends of the graph:

0:(t)

01 (Ovt) = 191 (t)’ t> O, 191 (t) € C(R}r)v
05’ (t) = On

(Lnt) = 92(t),  £>0, 9a(t) € C(RL). (4)
Here and further
0;(t) = 0;(0,1), q;(t) = 0:05(0,1), 63(t) = 0;(Ls,t), ¢;(t) = 0:0;(Ly, 1).

Neumann conditions (BVP 2). The values of the heat flows are known at the ends of the
graph:
k1 g (t) = k1q1(0,t) = xa(t), t>0, xi(t) € C(R}), (5)
knad (t) = kngn (L, t) = x2(t), >0, xa(t) € C(RL).
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The following continuity conditions and generalized Kirchhoff conditions are specified in
the common node Ag of the graph.
Transmaission conditions:

05 (t) = 0]

—_
—~
~
~—
<
I
—_
|
—_
~
Vv
=

0% 1(0),
05 (0) = 92(0),
kiah(t) = kjagl () +Q;(t), j=1,..,N—1, t>0. (7)

Here
_ 99

A . , 0.
o) = 0;0.0), ()= 2|, adt) =
=0

- a8 9
O z=L;

fp is the initial temperature at the common node Ag.

We need to find the solutions of these two BVP on the heat linear graph by known
Q;(t), where j =1,..., N, ¥1(t) and In(t) (Dirichlet problem) or x1(t) and xn(¢) (Neumann
problem).

3 Statement of boundary value problem on a segment of a graph

At first we construct a solution of some boundary value on one graph segment. Let consider
O(z,t) on [0, L], which is the solution of heat equation:

00 020

a—m@:F(x,t). (8)

Initial conditions: the temperature is known at ¢ = O:
0(x,0) =0p(z), Op(z)e C{0<z <L} 9)

Here we consider solutions to BVPs with local and associated boundary conditions.
Local boundary conditions:

{ (@161 + Bl ()], = G1 (1), (10)

(a2l + Boll2(t))] 1, = Ga(t).

where «, §; arbitrary constants, 6;(t), IL;(t) = —k% S (j = 1,2) are the temperature
-

and heat flow at ends of the segment in points: z = 21 =0, z = 29 = L. G,(t) are known
functions which are integrated functions on RY : G;(t) € L1(RL).
Connected boundary conditions:

a101(t) + BiIi(t) + ;01 (t) + Bo,lla(t) = Dj(t), j=1,2. (11)
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Conditions for matching initial and boundary conditions:
01(t) = 0(0,1),  02(t) = 0(L, 1), 0;(t) € C(RY).

It is assumed that all functions defining boundary conditions also belong to Lebesgue
space Li. Relations (11) contain all classical formulations of heat BVPs if we take some
a;j =0, B;; = 0. We find solutions to BVPs using the Generalized Function Method [14].

4 Generalized solution of boundary value problems on an graph segment. Gen-
eralized function method

To determine the solution on the graph, at first, we consider the BVP on the graph segment
by using the general function method. For this, we consider the BVP for the heat equation
on the segment [0, L] in the space S'(R?) = {f(x,t), (x,t) € R?} of generalized functions of
slow growth [15]. To do this, we introduce a regular generalized function (we mark it with a
cap):

5 [ b(z,t), (z,t) € D~

9($,t) - { 07 T ¢ D~ ’

where 6(x,t) is the solution of BVP, D™ = [0, L] x [0, 00). It can be represented in the form

0(x,t) = O(x, ) H(L — x)H(z)H(t).
Here H(x) is the Heaviside step function.
_To construct the equation for 6(z,t) in S’ (R?), we calculate the generalized derivatives
of 6(x,t):

22 = ng (L —x)H(x)H(t) — 02(t)6(L — ) H(t) + 61()0 () H (1),
20 2
% = %H (L —2)H(z)H(t) — qo(t)6(L — ) H (t) + qu(t)6(x) H (t)+

+02(t)0' (L — z)H (t) + 01 (t)H (t)d (z),
90 o0
5 = EH(L —x)H(t) + 0o(z)H (L — x)0(1),
where 0 (x) is a singular generalized J-function, ¢;(t) = % wep J=1,2.
The equation (7) in S'(R?) has the following form for 6(z,t):
00 %0 .
S~ o = Falwt) + ra(6(L — 2)H(E) — nar (4)3(2) H (1)~
— kb (t)8' (L — 2)H (t) — kb1(£)0" (x)H (t) + Oo(x)H(L — z)H (2)5(t). (12)
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Note that the right side of this equation includes all initial and boundary temperatures 6;(¢)
and heat flows IL;(t) = rq;(t) (j=1, 2).

Throughout the paper, we denote the partial derlvatlve by Ugz(x,t).

According to the theory of generalized functions [15], the solution of (12) can be rep-
resented as a convolution of the fundamental solution of the heat equation (8) with the
right-hand side of this equation:

O(x,t) = Fy(x,t) « Uz, t) + kg (t) H () #U(L— 1)~
— kq1(t)H(t ) U(xz,t) — kO2(t)H () *U,x(L —x,t)—
- ,@91( VH(8) % U.a(@,t) + (@) H (L — 2)H(2) Uz, t). (13)

T

Here, U(x,t) is the fundamental solution of the heat equation (1) by F(x,t) = d(z,t) =
d(x)o(t). It decays at oo and has the form [15]:

Uz, t) — 17: exp(—a? /Art) H (L). (14)

27K

We denote F(z,t) = F(x,t)H(z)H(L — 2)H(t). If it is a regular function, then relation
(13) can be represented in the next integral form:

O(x,t)H(L —x)H (z)H(t) =

“+oo
t)/d'r/U(:E—y,t—T)Fg(y,T)dy+I{H($)H(t) @t —7)U(L — z,7)dT—

Os(t — 7)U,p(L — x,7)d7—

O~ o

 RH(L / Ul — y,t — 7)qi (1)dr — rH () H(?)
0

t
—kH(L—xz)H /U,xxt—Tﬁl )dT +
0

U(r —y,t)00(y)H(L — y)H(y)dy. (15)

T —

Formula (15) determines the temperature inside a segment by known temperature and
heat flows at its ends and is very useful for engineering applications. However, for correctly
posed boundary value problems, out of 4 boundary functions on the right side of formula
(15), only 2 are known. To determine two unknown boundary functions, resolving boundary
equations should be constructed using boundary conditions at the ends of the segment.
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5 Solving boundary value problem in Fourier transformation space in time

To construct the resolving system of equations, we use Fourier transformation in time:

O(z,w)=F [é(x,t)] = H(z)H(L — z) /G(x,t)ei”tdt,
0
. (16)

O(z,t) = o

/ 0(z,w)e “dw.
To define the Fourier transform of the generalized solution (11) we use the property of
Fourier transform of convolution [15]:
0(z,w) = Fy(z,w) #U(,w) + 0o(2) H (L — 2) H (x) * U (2, w)+
+ k@e(w)H(2)U(L — z,w) — kg1 (w)H(L — 2)U(z,w)—
— kb (W)H (2)U (L — 2, w) — k01 (w)H (L — 2)U 1 (z,w). (17)

Here, a variable under the sign of convolution (*) shows the convolution is applied only
x

over the variable x. The integral representation of Equation (17) has the form:

O(z,w)H(L — x2)H(x)H(w) =

L
= (@) [ U@ y.) Falyswdy + <H (@) [ Ol = y.)00()dy+
0

Tt~

+ kG (W) H (2)U(L — 2,w) — kqa (W) H
— k(W) H (2)U (L — 2, w

L—2)U(z,w) —
— kb (W)H(L — 2)U ,p(z,w). (18)

~—

Fourier transform of Green’s function of the heat equation is equal to

sin (k |z|)
U =~ 19
where k = Viwr 1 = ™4V wr1 = (1 +1),/2. It satisfies the equation:
d*U -
12 +iwk U = 6(x).
Its derivative has the gap in point x = 0 and equal to
_ _sgnx _ 1, = >0,
Up(z,w) = P cos(k |z|), sgnz = { 1 <o
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There are the following symmetry conditions:

U(z,w) =U(—r,w), U, (+0,w) = :F%' (20)

We use these properties for solving BVP.

6 Resolving equations of boundary value problems

To find unknown boundary functions, we pass in relation (18) to the limit at z — 0+e&, where
€ >0:

01(w) = lim A(0 + ¢, w) = F(z,w) * U(x7w)|;c:0 + 60(x)H (L — :E)H(ZL‘); Uz, w)|

e—0

x:0+

+rG@(W)H(x)U(L —0 —¢,w) — k@1 (w)H(L —2)U0 + &,w)—

—k02(W)H (2)U(L — 0 — g,w) — kb (W)H(L — 2)U (0 + £, w).

Next, we move the last term to the left side and take into account the right limit of U, (x,w)
at zero (20). We obtain the next equation on the left end of the segment:

$01(w) = Fla,w) U(2,)] o + bole) H(L — 2)H(x) = U, )],

* +
+ k@(w)H(2)U(L,w) — k1 (W)U (0,w) — kb2 (w)H (2)U,.(L,w) (21)

Similarly, we consider the limit at x — L — ¢, € > 0.

f2(w) = lim O(L — ¢, w) = F(z,w) * U(w,w)‘gC:L +6p(x)H(L — x)H(x) * U(z,w)|,_,—

e—0 z=L

— k@ (W)U(L — &,w) — k01 (W)U (L — €,w) — k02(w)H (2)U,z(c,w) (22)

We move the last term to the left side, and obtain the second boundary equation:

%ég(w) = F(x,w): U(“T’w)‘sz + Oo(x)H (L — x)H(w)z U(asjw)‘x:L—

— Kq1 (w)U(L,w) — ﬁél(w)U,w(L,w) (23)
We formulate the obtained results in the form of this theorem.

Theorem 1. The Fourier time transformants of boundary functions of boundary value prob-
lems (7)—(10) satisfy the system of linear algebraic equations of the form:
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kU ,o(L,w) kU(L,w) q1(w)
kU ,o(L,w) —kU(L,w) o(w) ] [ Q1(0,w)
+[ 0.5 0 H—z(w)]_[QQ(L,w)]’ 24
where
Q1(0,w) = F(z,w) * U(ac,w)’xzo + 00(x)H(L — x)H (z) * Ulz, w)}xz[)’ (25)
Q2(L,w) = F(z,w) * U(m,w)’x:L + 0o(z)H(L — z)H () * U(x,w)\z:L. (26)

The resulting system (20) makes it possible to solve BVP for any given two boundary
functions of temperature and heat flow at the ends of a segment of four boundary functions.
To solve all temperature BVPs, it is convenient to consider the extended system of equations
in the form of a matrix equation:

A(w) - B(w) = C(w), (27)
where _
0,5 0 kU ,z(L,w) —rU(L,w)
Alw) = kU,p(L,w) wU(L,w) 0,5 0
asi ass as3 as4 ’
aq1 42 a43 a44

B(w) = (01(w), @1 (w), b2 (w), 2(w)) ,
C(w) = (Q1(0,w), Qa2(L,w), b3(w), ba(w)).

The last two equations in the system (27) are determined by boundary conditions at the
ends of the segment, which are known for BVP:

[ asy  as2 } [ 01 (w) ] + [ @33  a34 ] [ 02 (w) } _ [ és(w) ] (28)
a4l Q42 a1(w) a43 Q44 32(w) ba(w) |

By given coeflicients a;; and right-hand side b;(w), we have four equations (27) for definition
of four boundary functions. The solution of Egs (27) has the form:

B(w) = A~Yw) x C(w), (29)

where A~!(w) is the inverse matrix of A(w).

So, all boundary functions are defined; therefore, the Fourier transform (17) for solving
the boundary value problem is constructed. Using the inverse Fourier transform (16), we
obtain the original 6(z,t) on the segment [0, L.

We use the solution (17) and Eqgs (24) for constructing the solution of BVP on the linear
graph.
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7 Algebraic equations for determining unknown boundary functions on a heat
linear graph

We return to the consideration of BVP for the heat equation on a heat linear graph (Fig.
1). On each segment L; of the graph, we have the system of linear algebraic equations for
determining four boundary functions:

N LA
1 ' 0 —cos(k;Lj) , (Jw)” q{(w) _ :1] (w)
—cos(k;L;) — Slr;glzi)L)j) 1 0 03(w) 5w) )7 (30)
B (w)

Biw) = (1+0), /5=, j=1,..N.

Here, j denotes the number of the corresponding graph segment, and Ff (w) = 2@31 (0,w),
FQJ (w) = 2Q§(L, w). So, we have 2N equation for the determination of 4N boundary functions
at every edge: B(w) = (5%,(]%, 02.a,...... LN @y, oy (jév) Also, we have 2 conditions on the
ends of the graph (4) or (5) and 2(N — 1) transmission conditions at the node points of
this graph (6). So we have the full system 4N equations for determination of 4N boundary
functions at every edge.

Theorem 2. Resolving system of equations of Dirichlet boundary value problem (2), (4), (6)
on a heat linear graph with N different segments has the form:

Al(w) x B(w) = C(w), (31)

Resolving system of equations of Neumann boundary value problem (2), (4), (6) on a heat
linear graph with N different segments has the form:

A2(w) x B(w) = C(w), (32)

Here the matrices Al(w), A2(w) have the following dimensions 4N x 4N.
The first 2N lines along the diagonal Al(w), A2(w) contain the connection matrices (30)
of unknown boundary functions of edges. The remaining elements are zero:

A1 (w) 02><4 02><4 02><4
02><4 AQ (w) 02><4 02x4
Ai' == . ’
{ ]} 02><4 . e e e e e 02><4
O2><4 02><4 02><4 AN (w)

i=1,..,2N, j=1,..,4N.
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Here .
1 0 —cos(k;Lj) SII;(J_IZ)L)J)
AJ (w) = sin(k;L;) )
—cos(k;Lj) — (o) 1 0

The next N — 1 rows of the matrices Al(w), A2(w) contain the continuity conditions (6)
at node points

0010 ~-1000 0000
Ay |0000 0 010 0000
i 0000 0 000 0000 [
0000 0 000 1000

i=2N+1,..,3N, j=1,..,4N

The next N — 1 rows of these matrices contain the conditions (7) at node points:

000 kK 0 -k 00 0 0 00
Ay 0000 0 0 0k 0 0 00
i 0000 0 0 00 0 0 00|’

0000 0 0 00 0 —ky 0 0

i=3N—1,.,4N -2, j=1,..,4N.

The last two rows of the matriz are the boundary conditions at the ends of the graph.
For the Dirichlet problem, this is condition (4):

o O

0 0
0 0

o O
o O
]
o O
H,_/

1
{Ai} = { 0
i=4N —1,4N; j=1,..,4N

For the Neumann problem, this is condition (5):

L [0 Kk 00

i=4N —1,4N; j=1,..,4N

o O
o O
o O
o
—

KN

Theorem 4 follows from Theorem 3.
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Theorem 3. The solution to boundary value problems (1)—(6) on the thermal graph has the
form.:

0;(xj,w)H (L — ;) H(x;) =

L; L
:U]/ Fj(y, w)dy + k; H / 5( 9”( Ydy+

0

H(L,

+ Rj@ (W) H ()T (Lj — wj,w) = K@ (w) ' — 2;)Uj (), w)—
— k05 (W) H (2)) U)o (Lj = wjw) = 50 5 (W) H(Lj = 2)Uj,a, (), 0). (33)

Here (8}(w), (), 03(w), () oo BY (), (@), 05 (), @ () = B(w), where B(w) are
the solution of resolving system equations:

for Dirichlet problem: B(w)= Al"}(w) x C(w),

for Neumann problem: B(w) = A27}(w) x C(w).

So we defined the Fourier transformant of the solution of BVPs on the thermal graph.
Then by using the formula of inverse Fourier transformations (16) we calculate the original
solution—-the temperature at every point of the graph. So, both BVPs have been solved.

Conclusion

Using the method of generalized functions, we solved the boundary value problems of
thermal conductivity on the thermal linear graph, which can be used to study various network-
like structures under conditions of thermal heating (cooling). A unified technique has been
developed for solving various boundary value problems typical for practical applications.

The action of heat sources can be modeled by both regular and singular generalized
functions under various boundary conditions at the ends of the graph. The obtained regular
integral representations of generalized solutions make it possible to determine the temperature
and heat flows on each element of the graph, at any point of it, for stationary oscillations
with a constant frequency and in the case of periodic oscillations.

For nonstationary processes, performing the inverse Fourier transform in time, we obtain
the original solution in the original space-time. The construction of the original depends on
the boundary conditions and the type of functions that determine them and should be con-
sidered separately for a specific boundary value problem. The generalized function method
presented here makes it possible to solve a wide class of boundary value problems with local
and connected boundary conditions at the ends of the edges of the graph and various trans-
mission conditions at its nodes and can be extended to network structures of very different
types. It distinguishes this method from all others that are used to solve similar problems.

It should be noted that if we change the transmission condition (6), setting Q;(t) = 0
and qu (t) = qjl 41(1), i.e. introduce the continuity condition of the derivatives with respect to
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x at the nodes of the linear graph, then the solution to this problem for the heat equation
with discontinuous coefficients is also constructed by this method. Only in the rows of the
matrix of the resolving system of equations that contain this transmission condition, should
we put 1 instead of x;. The issues of the correctness of setting such problems for parabolic
equations with discontinuous coefficients on a certain class of functions were considered in
[16], [17], [18].

In [19], a boundary value problem for the heat equation with a piecewise constant thermal
conductivity coefficient with one discontinuity point under homogeneous boundary conditions
with the condition of equality of heat fluxes at the discontinuity point was considered.

The generalized function method presented here makes it possible to solve a wide class
of boundary value problems with local and connected boundary conditions at the ends of the
edges of the graph and various transmission conditions at its node and can be extended to
network structures of very different types. It distinguishes this method from all others that
are used to solve similar problems.

The proposed method applies to a wide range of BVPs, including those on mesh struc-
tures.
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AiinakeeBa H.2K., Anekceena JI.A., [Ipukazunkos . A. 2Kburynsik Tenaey yimia Jupuxiie
xone Heliman ecenrepi ChI3BIKTBIK, KO OYBIHILI XKBLIY IpadTapbl 2KoHe OJIaPIbIH MIeniMIaepi

ZKbUrysibIK KpI3bIPyY (CAJIKBIHIATY ) XKarIaiibIHa OPTYPJI KYPBLIBIMIAP/Ib 3ePTTey YIIH
nafiIaJaHbLIYbl MYMKIH CBI3BIKTBIK, YKBLIYJIBIK, Ipad OOUBIHINA KBLTY ©TKI3TIIMITIKTIH, IIeKa-
paJiblk ecenTepi KapacTbipbuiaabl. MyHIa Kajanblianral (QyHKIUSAIBIK, 9/1iC Heri3iHae wH-
JKEeHEPJIIK KOoJIAaHOa apra ToH YKbLIY OTKISTIIITIKTIH IeKapaJiblK, eCelTepiH eIyl 6ipbl-
Hrait omicremeci o93ipienai. 2Kuekre KoHe KbUIY CHI3BIFBIHBIH I'PAMBIHIA KLY OTKI3TIIITIK-
TiH, CTAI[IOHAPJIbI eMeC »KoHe CTAIlMOHap IEeKapPaJIbIK eCelITePiHiH KAJIIbIJIaHFaH IIeniMaepi
rpadThIH IIETTEePiHIe dPTYPJIi IIeKapasblK, ITapTTapia *KoHe OHBIH TYWIHIHIE YKAJITbLIAHTAH
Kupxrod mraprrapeiaga Kypacteipbliaabl. Herisri memivuin Oypbe TypJIeHIIpyITiCiHIE Ka-
CHEeTTEPIH MaiilajJaHa OTBIPBII, AHAJIUTUKAIBIK, TYPJE IeKaPAJIbIK, €CeITEPIiH IeliMIePiHiH,
TYPaKThl HHTEIPAJIJIBIK OeifHe Iepi ajbiHa bl AJIBIHFAH MENIMIEP 9PTYPJIl TUITEr KBLTY KO3~
JIEpIH MOJIeJIbIeyTe MYMKIHJIK Oepe/ii, COHBIH, IIIH/e CUHTYJISAPJIB XKAJITbLIaHFaH (DYHKIIHS-
Jlapanl naifinaganaabl. MyHIa KeJTIpUIreH KaJlblLIaHralH (PYHKIUIIAP dici rpadThIH meT-
TepiHiH, MeTTepiHeri »KeprijiikTi KoHe OallJIAHBICKAH IIEKAPAJIBIK, MAPTTAPMEH YKOHE OHBIH,
Ty#inaepingeri opTypJii 6epiny KarmaiiapbIMeH IIeKaPaJIbIK eCeITEP/IiH KeH K/IAChIH IIeITyTe
MYMKIHIIK 6epesi.

Tyiiin ce3zep: Kby OTKIZIIITIK, XKaJMbUIAHFAH PYHKIUIAD, IPTesii 2KOHEe KAJIIThLIa-
Mma 1rrenriM, Pypbe TYpIeHIAIpYi, IIeKapablK TeHIeYIeP/Il ey, ChI3bIKTHIK, rpad.

AttnaxeeBa H.2K., Anekceesa JI.A., [Ipukazuukos J.A. Samaua Jlupuxie u Helimana mist
yPaBHEHUSsI TEIIOMPOBOIHOCTH JIMHEHHBIX MHOI'O3BEHHBIX TEILJIOBBIX I'Pa()OB U UX PEIeHHSsI

PaccmarpuBarorcst KpaeBble 3alady TEILJIOMPOBOIHOCTHA Ha JIMTHEHHOM TEIJIOBOM I'pade,
KOTOpBIE MOTYT OBITH HMCIIOJIB30BAHBI JJIsT UCCJIEOBAHUSI PA3JIUNIHBIX KOHCTPYKIUI B yCJIO-
BUSIX TEMJIOBOIO HarpeBa (OXJIaXKJCHUsI). 371eCh HAa OCHOBE MeTO/a ODOOINEHHBIX (yHKIHIT
paspaboTaHa eIuHasi METOJUKa PElIeHUs KPAeBbIX 3aJa49 TEIJIOIPOBOIHOCTH, TUIIMIHAS JIJIsT
MHXKEHEPHBIX MpuiIoxkennii. IlocTpoeHbl 0000IEHHbIE PEIeHnsT HeCTAIMOHAPHBIX U CTaIlio-
HapHBIX KPaeBbIX 3aJia4 TEILJIOIPOBOIHOCTH Ha pedpe U Ha JIMHEHHOM TEeIlJIOBOM Ipade IpH
Pa3INYIHBIX TPAHUYIHBIX YCIOBUAAX HA KOHIAX rpada n 0600mennbix yeaopusx Kupxroda B ero
yaie. Ucnonb3ys cBoiicrBa TpancdopManTsl Pypbe hyHIaMEHTAILHOIO PEIIEHUs, IOy YeHbI
peryJisipHble HHTErpaJibHbIe IIPEICTABIEHUs PEIIIeHNIT KPAEBbIX 38/1a7 B aHATUTHIECKOM BHUJIE.
[Tosry4ueHnHbIe penreHns TO3BOJIAIOT MOJIEINPOBATh HCTOYHUKH TEILIa Pa3INIHbIX THUIIOB, B TOM
9HCJIe C UCIIOJI30BAHUEM CUHTYJISIPHBIX 00001menubix dyukiumii. I[1pencraBiaeHublit 3/1ech Me-
TOJI 00OOINEHHBIX (DYHKIWI TTO3BOJIET Pelrarh IMHPOKUI KJIaCC KPAEBhIX 33189 C JIOKAJIbHBIMU
U CBsI3aHHBIMH I'DAHUTHBIME YCJIOBUSIME Ha KOHIAX pebep rpada u pasjmIHbIMEA YCIOBUSME
[IPOITYCKAaHUs B €r0 y3JIaX.

KuirodyeBble cjioBa: TEIIONPOBOIHOCTH, 0000IIEeHHbIE PYHKINHA, (DyHIAMEHTAJIBLHOE U
obobIenHoe perenne, npeobpazoBanune Pypbe, paspelnrenne rPaHNIHbIX YPaBHEHU A, JIMHeH-
HBII rpad.
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Abstract. Hardy's inequality originated in the early twentieth century when G.H. Hardy introduced
this fundamental result in real analysis to bound integral operators. Its elegant formulation and opti-
mal constants spurred widespread interest, leading to numerous refinements. These developments laid
the groundwork for further exploration and multidimensional extensions, deeply influencing harmonic
analysis, partial differential equations, and mathematical physics. This historical evolution continues to
inspire modern advancements in research. We discuss multidimensional generalizations of some improved
Hardy inequalities based on the divergence theorem. The obtained Hardy-type inequalities extend a re-

cent version of the one-dimensional Hardy inequality with the best constant to multidimensional cases.

Keywords. Hardy inequality, sharp constant, non-increasing rearrangement, divergence theorem.

1 Introduction

This paper is motivated by recent advancements in the Hardy inequality, as discussed in [1].
For readers interested in further exploration of this topic, we recommend [2] and [3], along
with the references therein.

In this section, we discuss some preliminary concepts to set the groundwork for the proofs
of the main theorems in the following section. While we provide the results specifically for
the three-dimensional case, our techniques are applicable in any dimension.

Let i be the 3-dimensional Lebesgue measure given in R3. Let f be a measurable function
defined on Q2 C R3.

2010 Mathematics Subject Classification: 26D10, 26D15, 35A23.
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A function
@) =inf{o: p{x € Q:|f(z)] > o} <t}

is called a non-increasing rearrangement of the function f.
Let D be an open set of R? satisfying:

1. 0e D,
2. 0D is a smooth manifold,
3. uD=1.

We set
Dy = {(t1/3x1,t1/3x2,t1/3x3) : (21,29, 23) € D}, t>0.

Thus, uDy = t. We have

Lemma 1. Let 1 < p < oo. For any € > 0 there exists a non-increasing function ¢. defined
on (0,00) such that

(= (4 St ous)as)” ar) " _»
(5 (@e(t)Pa) P11

Proof. A key inspiration for this construction comes from the classical Hardy inequality:

—E.

(/000 <1 /()tf(s)d8>pdt>; <L </O°°(f<t))pdt>é

which holds for any nonnegative measurable function f. The best constant in this inequality
is precisely 1%’ so our goal is to construct a function ¢. that gets arbitrarily close to achieving
equality in this inequality.

To achieve this, we consider the choice:

Ge(t) = (¢ +6)1/7, (1)

for a small parameter § > 0, ensuring smooth truncation and controlling behavior at small
values of t.
For this choice of ¢., we approximate:

t
Ho.(t) = % / (s +6)"/7ds, )
0
Using asymptotic expansion,
Ho.(t) ~ %(t +8)7M, (3)
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Taking LP-norms on both sides, we obtain:

H
H ¢€||Lp > p c. (4)
[¢elle — p—1
Thus, for sufficiently small §, the desired inequality holds. O

Lemma 2. Let {D;},. be a set defined above. Then for any nonincreasing function ¢ on
(0,00) there exists a measurable function u(z) on R3 such that

and

/Dt u(x)dx = /Ot o(s)ds.

Proof. Let m € N, Ak:{s:%§¢(s)<2%},k€N. Let

k
¢m(5):7ma if se A, ke N.

Then ¢, = ¢ and ¢1 > ¢ > .... Since ¢ is nonincreasing, there exists a sequence {t;},cy
with (tx_1,tx) C Ag C [tk—1,tk]. Now we define

U () = if v € Dy \Dy, ,, keN.

om
Then
Up (8) = &7 (3)-
Since )
[um () = Umr ()] < om>
there exists a limit lim,— o0 U (z) = u(x) and u,, = u. O

2 Main results

In this section, we present the main results of this paper.

Theorem 3. Let 1 < p < co. For any locally absolutely continuous function f on R? we have

o) F p F p p
/ max{ sup |l ,sup’t‘}dr < (p) / |div f|Pdz. (5)
0 o<t<r TP p<t tP p—1 R3
The constant (%)p s sharp. Here Fy 1= faDt f (x1, 22, x3) (dr1dxe + drodrs + drsdry).

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 4349
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Proof. By using the divergence theorem, we obtain

f(z1, 22, x3) (dr1dxs + drodrs + dxsdxry) = / <6f + of + 8f> dxidzodxs
0Dy Dy 8$1 8x2 8x3
of ~of Of /t
< 2L 2 e dasds = | wt(s)d
a Iiu:pt/e T e (e)ds,
where of of of
T Or1 | Ows | Oy’
and
1
SUP’/ u (Y1, Y2, y3) dy1dyadys| <
tZ’V‘ Dt
1 I
<sup o u (o vmm) | dindyedys = [ a(s)ds.
le|>t ‘€| e t Jo
Then

‘faDt f (.%'1, T9, $3) (d.%'ldm'g + dxodrs + dxgd.%j)’
max { sup ,
o<t<r r

‘faDt f (131, 9, :Eg) (dl‘ldl’z + dl’gdl"g, + dl’gdl‘l)‘

sup
r<t t

Thus, we have

Sup s
0<t<r rP

P
00 ‘faDt f (1,22, x3) (dr1dxe + drodrs + dacgd:cl)’
/ max
0

p
‘faDt f (.7,'1, 9, $3) (dxldl‘z + d1‘2d$3 + d$3d.7}1)‘ }
sup

r<t tP

< [Twroras(C5) [Cwora- (G2) [ wwpd

_(_p \" [ |of  of  off
_<p—1> /Rs

= + -+ | dridzadrs.
Now, we show that the constant is sharp.

dr

81‘1 61;2 8:63
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Let € > 0 and ¢, be a function given in Lemma 1. According to Lemma 2, there exists

ue with

Ua(s) = ¢8(8)'

Let f. be a solution to the equation

or or or
axl axQ 8(133 — Weg \L1,42,43) -

By using the divergence theorem, we have
11
</ ‘/ fe (56171‘2,1‘3) (dxldxg +d$2d$3+dl’3dl‘1)
o It Jap,
|1 [ af of of [P \'"
= — dx| dt
<A ‘t Dt8m1+8x2+8x3 v
oo |1 p 1/p |1 [t p 1/p
= </ ‘/ ue(x)dz dt) = (/ ‘/ o:(s)ds dt)
o ItJp, o ItJo
P 0 » 1/p P o] » 1/p
> & — £ *
() ([ -2 (o)
e +<9fs ofe

Gt (Lo an

8.231 a$2 61‘3
Hence, the constant [% is sharp for the inequality

P 1/p
dt>

p 1/p
dxldmgdx;),) .

P 1/p
dt)

P 1/p
dxld.%'gdxg) .

t Jop,

< P /
_p—l(R3

This implies that the constant is also sharp for inequality (1).

<1
</ ' f (.CEl, 9, xg) (d.rldl’g + dl’gdﬂ:g + dargd:cl)
0

of of  of

- 74_7

81’1 8372 8953

O

Below, to make the formulas shorter, we write & for (x1,x2,x3), so f(Z) stands for

f(x1, 22, 73).
Theorem 4. Let 1 < p < co. Then, for any locally absolutely continuous function f on R3

2 2 2\ P/2
(f f(z) dxlda:2> + ( | f(@) d:vgdx;»,) + ( [ f(@) d$3d$1>
0 0 9Dy

o

/

0

Dt Dt
dt <

tP
p
< <pfg> [Iviwpas.
R3

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 4349




48 Erlan D. Nursultanov, Durvudkhan Suragan

p
p .
Here the constant (p—_1> is sharp.

Proof. By using the divergence theorem, we obtain

sup f (z1, 22, 23) (1 dx1dre + aadradrs + azdrsdry)
a%+a%+a§:1 8Dt

= sup / <a18f + aga—f + a38f> dridxrodxs
Dy

oz%—&-oc%—i—ocg:l
0 0 0
Oélif + Oégif + Oégif

821?1 8302 61’3 dl‘ldl'Qde‘g

< sup sup/

a?+a3+ai=1le[=t Je
t

< sup/|Vf (1, x2,x3)| dr1dxodrs :/ (IVf)*(s)ds.
e 0

le|=t

Then

2 2 2\ 1/2
(( f(z) d:):ldxg) + < (Z) dl‘gd.’Eg) + < (%) drgdx; ) <
8Dt 8Dt 8Dt

< / (IV£1)*(s)ds.

N———

t
0
Thus, we obtain

= <<f8Dt /@) dmldm)Q + (faDt f(z) d«’132d$3>2 + <f8Dt f (@) dxgda:l)2>p/2

J 7

< [Cwwmroras () [Tavarora- (G2 [ vseras

dt <

The sharpness is proved as in the case of Theorem 3. O
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Hypcynranos E. 1., Cyparan /I. uepreniiust TeopeMachl apKbLIbI AJIbIHFAH ONTHMAJIIHI
TYpaKTBLIAPEI Oap Keibip Xapau THITI TeHCI3MIKTED

Xapau Tencizairi XX raceipaniy bacbiaga 1. X. Xapan HAKTHI Tajgay CajacblHia HHTe-
rpaJi oriepaTopJap/bl barajiay YIliH OCbl Heri3ri HoTuKeHi eHrisren. OHbBIH 9/IeMi CUIIATTAMACKHI
JKOHE OHTAMJIBI TYPAKTLICHI KCHIHEH KBI3BIFYIIBLILIK TYILIPALI, Keilin OyJl KenTereH KeTij-
Jipyaepre okeai. By »KeTicTiKTep 9pi Kapail 3epTTeysiep MeH KOUeIeMIi KeHeUTyIepIin
HeTi3iH KaJabl, TapMOHUKAJBIK TaJIay, OOJIIIEKTIK TeH ey Iep KoHe MaTeMATUKAJBIK (PU3UKA,
caJaJlapblHa TepeH bIKIAJ eTTi. Byl Tapuxu maMy Kasipri 3epTreysepre madbIT 6epyai KaJra-
creipyfa. JuBepreniust TeopeMachl HerisiHae Keibip keTiaaipiaren Xapau TeHCI3IKTepiHiH,
KOIOJIIIEeM Il »KaJIIbLIAYIapbl KeITiplireH. AJbIHFaH Xapau TUMITI TEHCI3MIKTED »KyBIKTa YKa-
pusitanran 6ip esmem Xapau TEHCI3IINH ONTUMAJIIBl TYPAKTBIMEH KOIOJIIEMIl YKaraaii-
Jlapra KeHenTei.

Tyiiin ce3mep: Xapan T€HCI3IIr, ONMTUMAJIBI TYPAKTHI, OCIIEUTIH aybICTHIPY, IUBEPreH-
IIUsT TEOPEMACHI.

Hypcynrarnos Epsan Jlayr6ekopud, Cyparan Hypsyaxan. Hekoropble HepaBeHCTBa THIIA
Xapau ¢ ONTUMAJLHBIMU KOHCTAHTAMHE, ITOJIyYeHHBIE C IOMOIIBIO TEOPEMBI O JIMBEPIeHITNH

Hepagenctso Xapau Bo3uukio B Havase XX Beka, korja [.X. Xapau npeicTaBui 9TOT
dyHIaMEHTATBHBIN PE3Y/IBTAT B BEIIECTBEHHOM AHAJN3E I OIEHKN NHTErPAJIbHBIX OIIEPATO-
poB. Ero sjierantrast GhopMyIHpOBKa U ONTUMAaJIbHBIE KOHCTAHTHI BBI3BAJIM MIUPOKUI MHTEPEC,
9TO IIPUBEJIO K MHOTOUHCIEHHBIM YCOBEPIIIEHCTBOBAHUSM. DTH Pa3spabOTKN 3aJI02KUIU OCHOBY
JUIS TAJIBHEHININX UCCICOBAHUN U MHOTOMEPHBIX 0000IeHuil, 0Ka3aB 1iiybOKOoe BJIMSIHUAE Ha
rapMOHUYECKUI aHa/ M3, quddepeHnnaabHble YpaBHEHUS] U MaTeMaTHIeCKY0 (DU3UKY. IDTa
HUCTOPUYIECKAst BOJIIONHS IPOIOJIZKAET BIOXHOBJIATH COBPEMEHHbIE UccieoBanust. Jlanbl MHO-
romMepHble 0000IeHNsT HEKOTOPBIX YJIYUIIEHHBIX HEPABEHCTB Xap/ U, OCHOBAHHbIE HA TEOpEMe
o aueprennuu. [losydyennbie HepaBeHCTBA THIIA XapAU PACIIUPSAIOT HEJABHIO BEPCHIO OJI-
HOMEPHOI'0 HEPABEHCTBA XapAu C HAWIYIIIEH KOHCTAHTONH HA MHOTOMEPHBIE CJIyYau.

KuaroueBbie cioBa: HepaperncrBo Xapam, onTuMaJbHaAsi KOHCTAHTA, HEBO3PACTAIOIIAST
epecTaHOBKa, TeOpeMa O JIUBEPTEHIINN.
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Abstract. The classical Caffarelli-Kohn—Nirenberg inequalities, originally established in Euclidean space
in the 1980s, provide a unified framework for interpolation between Sobolev and Hardy inequalities.
Their extension to stratified (or homogeneous Carnot) Lie groups began in the early 2000s, motivated
by subelliptic analysis and geometric measure theory, revealing rich interactions between group structure,
dilation symmetry, and functional inequalities. In this paper, we establish the weighted and logarithmic
Caffarelli-Kohn-Nirenberg type inequalities on a stratified Lie group. As a consequence, we can apply it
to prove the weighted ultracontractivity of positive strong solutions to
ou

d Ezﬁp(d u) )

where L,f = Vu(|[Vuf|P 2Vuf) is a p-sub-Laplacian, d is a homogeneous norm associated with a

fundamental solution for sub-Laplacian and « € R, 1 < p < Q.

Keywords. Caffarelli-Kohn-Nirenberg inequality; logarithmic Caffarelli-Kohn-Nirenberg inequality; strat-
ified Lie group.

1 Introduction
In 1984, Caffarelli, Kohn and Nirenberg published a celebrated work [4] where they derived

the general case of inequalities such as Gagliardo-Nirenberg inequalities, Sobolev inequalities,
Hardy-Sobolev inequalities, Nash’s inequalities and Hardy’s inequalities in the following form:

Theorem 1 (Caffarelli-Kohn-Nirenberg inequality [4]). Let p,q,r, «, 8,0 and a be fized pa-

2010 Mathematics Subject Classification: 39B82; 44B20, 46C05.

Funding: This research is funded by the Science Committee of the Ministry of Science and Higher Edu-
cation of the Republic of Kazakhstan (Grant No. BR20281002).

DOI: https://doi.org/10.70474 /selet136

(©) 2025 Kazakh Mathematical Journal. All right reserved.



Weighted and Logarithmic Caffarelli-Kohn-Nirenberg . .. 51

rameters in R satisfying

p,g=1,1r>00<a<l, (1)
1 a1 1

LI ) 2)
p n g nr n

where
Y= aco+(1-a)B. 3)
There exists a positive constant C such that the following inequality holds for all f € C§°(R™)

2" fllr@ny < Clll2l*IV I o @ 1l £l pany: (4)

if and only if the following relations hold:
1 -1 1

:a<+0‘ )+(1—a)(+ﬁ), (5)
p n q n

0<a—oifa>0, (6)

+

1
r

32

(this is dimensional balance),

-1 1
— =+ (7)
r n

1
a—oc<1lifa>0and — +
D n

Note that whena =1, =0,7v=—s/r,0 <s<p<nand p*(s) =r = %, Theorem

1 gives the Hardy-Sobolev inequality that is the interpolation of Sobolev’s inequality (s = 0)
and Hardy’s inequality (s = p) such as

o) \ 7o L
</ BT d:v) < Clnp) ([ 1Vsras) ®)

Since then, the Caffarelli-Kohn-Nirenberg (CKN) inequality has been extended in differ-
ent directions. For instance, in the Euclidean setting, the sharpness of constants and extremal
functions in the CKN inequality was investigated by many authors such as Bouchez-Willem
[3], Catrina-Wang [5], Chou-Chu [6], Del Pino-Dolbeault 7], Dolbeault-Esteban-Laptev-Loss
[8], Lin-Wang [17], and Liu-Zhao [18]. In recent years, CKN inequality has been actively inves-
tigated in the setting of the Heisenberg group, stratified Lie group, and homogeneous groups.
For example, Garofalo-Lanconelli [9], Feng-Niu-Qiao [13]|, Han [11], Zhang-Han-Dou |2§],
Han-Niu-Zhang [12] on Heisenberg group, Ruzhansky-Suragan |23, 26|, Ruzhansky-Suagan-
Yessirkegenov [24, 25|, S.-Suragan [27] on stratified groups, Ozawa-Ruzhansky-Suragan [20]
on homogeneous groups.
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Motivated by results in [11], [19] and [13], in this paper, we investigate the weighted
and logarithmic Caffarelli-Kohn-Nirenberg type inequalities on a stratified Lie group. As
a consequence, we can apply it to prove the weighted ultracontractivity of positive strong
solutions to the equation of the form

Ou

4 = Lold)", )

where £,f = Vu([VufIP"2Vuf) is a p-sub-Laplacian, d is a homogeneous norm associated
with a fundamental solution for sub-Laplacian and o € R, 1 < p < ). The outline of this
work has the following form:

Section 2 is devoted to obtaining a weighted Caffarelli-Kohn-Nirenberg type inequal-
ity with respect to the homogeneous norm associated with a fundamental solution for sub-
Laplacian. First, we introduce the propositions of Hardy and Sobolev inequalities on a strati-
fied group. Combining these inequalities, we prove a weighted Hardy-Sobolev-type inequality
with a homogeneous norm associated with a fundamental solution for sub-Laplacian. As a
result, we could derive a weighted Caffarelli-Kohn-Nirenberg-type inequality.

Section 3 presents the logarithmic and parametric logarithmic Caffarelli-Kohn-Nirenberg
inequalities with a homogeneous norm associated with a fundamental solution for sub-Laplacian
on a stratified group. There are obtained the weighted and logarithmic Hélder inequali-
ties. Using those inequalities and the weighted Caffarelli-Kohn-Nirenberg type inequalities in
the case v = a = 3, we prove the logarithmic and parametric-logarithmic Caffarelli-Kohn-
Nirenberg inequalities.

Section 4 is dedicated to proving the weighted ultracontractivity of positive strong solu-
tions to a kind of evolution equation (9) by using the parametric logarithmic Caffarelli-Kohn-
Nirenberg inequality.

1.1. Preliminaries

Let G be a stratified Lie group (or a homogeneous Carnot group), with dilation structure Jy
and Jacobian generators Xi,..., Xy, so that N is the dimension of the first stratum of G.
We refer to [15] and [2], or to a recent book [22]| for extensive discussions of stratified Lie
groups and their properties. Let @) be the homogeneous dimension of G. The sub-Laplacian
on G is given by

L=> X} (10)
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where § denotes the Dirac distribution with singularity at the neutral element 0 of G. The
fundamental solution e(z,y) = e(y ') is homogeneous of degree —@Q + 2 and can be written
in the form

e(w,y) = [dly =), (11)

for some homogeneous d which is called the L-gauge. Thus, the L-gauge is a symmetric
homogeneous (quasi-) norm on the stratified group G = (R™, 0, Jy), that is,

e d(x) > 0if and only if = # 0,
e d(0x(z)) = Ad(z) for all A > 0 and z € G,
e d(z7!) =d(z) for all z € G.

We also recall that the standard Lebesgue measure dx on R" is the Haar measure for G
(see, e.g. [16, Proposition 1.6.6]). The left-invariant vector field X; has an explicit form and
satisfies the divergence theorem, see e.g. [16] for the derivation of the exact formula: more
precisely, we can write

a T Nl ( ) 8
_ l / (1-1)
X = + ay (2, ..,V ) , (12)
o, " & 2 X
with z = (2/,2®), ..., 2("), where r is the step of G and z() = (mgl), ... ,a:g\l,)l) are the variables

in the I'" stratum, see also [16, Section 3.1.5] for a general presentation. The horizontal
gradient is given by
VH = (Xl,...,XN),

and the horizontal divergence is defined by
divgf:=Vg-f.
The p-sub-Laplacian is defined by

Lof :=divg(|VafP2Vuf), 1<p<oc. (13)

2 Weighted Caffarelli-Kohn-Nirenberg-type inequalities
Proposition 2 ([11]). For all vectors vy, vy € R™, we have the following expressions such as

e For p <2 we have

1+ val? — |1 [P — plor [P~ (v1, va) < C(p)|valP.
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e Forp > 2 we have

p(p—1)

5 (o] + ool )2 [ua?,

lv1 4+ va|P — |vg|P —p!’U1|p72<’Ul,’U2) <

where (v1,va) is the inner product.

Proposition 3 (Hardy type inequality). Let G be a stratified Lie group and let d = 5ﬁ,
where € is the fundamental solution to the sub-Laplacian L. Suppose that Q@ > 3 then for
every u € C§°(G\{0}) we have the following Hardy type inequality

‘/|vgﬂ |pd>< >t/|vamm (14)

Note that the Hardy type inequality (14) was obtained by Garofalo-Lanconelli [9], D’ Ambrosio
[1], Goldstein-Kombe-Yener [10], and authors [21].

Proposition 4 (Sobolev inequality). Let G be a stratified Lie group, and let C' be a positive
constant. Then for every function u € C§°(G) we have

(/ Wx)zf* <o ([ ) 15)

wherep*—mwzthl<p<Q

Note that in the setting of the Heisenberg group and stratified Lie group, Sobolev in-
equalities (15) were obtained by Folland-Stein [14] and Folland [15], respectively.

1
Lemma 5 (Hardy-Sobolev type inequality). Let G be a stratified Lie group and let d = £2-Q,
where € is the fundamental solution to the sub-Laplacian L. Then there exists a positive
constant C1(s,p, Q) such that for all functions u € C§°(G\{0}) we have

Q—s

s Q-
éwawMMS@<éWwWQ E "

wherep*(s):%,()ﬁsgpand1<p<Q.

Proof of Lemma 5. The outline of the proof is to apply the Holder inequality with p.(s) =
(1 — %) p*+ %p, the Hardy type inequality (14), and the Sobolev inequality (15), respectively.
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Then we have

S P P £
R e I VA
G G

158
p* p

cP” (/G‘VHu‘pdx>p <(Qlip>p/6‘VHu‘Pd:L‘>p

Q—s

Q-p
=0 </ |VHu|pdx> )
G

where C} = CP"(1=5/p) ( p) . This proves Lemma 5. O

IN

Now, we prove the following weighted Hardy-Sobolev inequality on a stratified Lie group.

Theorem 6 (Weighted Hardy-Sobolev inequality). Let G be a stratified Lie group and let

1
d = €2-Q , where ¢ is the fundamental solution to the sub-Laplacian L. Then

p*(p,s,Q)ZM, and 1 < p < Q with Q > 3,
Q-p
0<s<p anda>pQ

there exists a positive constant C(p, s, o, Q) such that for all functions u € Wa (G\{0}) we

have
Q—s

d|® o
/ ’?js‘|dau|p*(p,s,Q)d$ <C (/ |daVHu|pdl'> ’ ) (17)
G G

where WaP (G\{0}) is the closure of C3°(G\{0}) with respect to the norm

1
lellyioe) = </ |daVHU|pd$>p
G

Remark 7. Note that Lemma & is inferred from Theorem 6 when o = 0.

Proof of Theorem 6. The proof is divided in the cases such as 1 <p<2and 2 <p < @. In
each case, we make use of Proposition 2 and Lemma 5.

Case 1 < p < 2. The outline of proof consists of the following steps: we take v = d%u,
then apply Proposition 2, the integral by parts, the divergence theorem, and inequality (14),
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respectively. Then for v; = avd 'V yd and v = Vv —avd 'V gd in Proposition 2, we have

p
p)/ |daVHUpd-T:C(p)/ ‘VHU— oavVgd
G G d

0PIV
p
a2

dzx

[|VHU|7’ - dz
G

p—2
- pa|a|p_2/ ofol IV gd|P~2(Vud,Vgv — ad oV gd)dzx
G

>
ar—1

|V ydf?
dar dr—1

[ \VgdP, ] o [ |VgdP?
_ p _ plVHA _ p Vaar =
; _|VHU| +(p—1la| T |v] | dz — alal .l

: .
= [ 1w+ - o Y2
Gl dp

z/ Vool + (p— Djap V2L
G L

d
:/(}|VHv|pda:+a|a]p_2( —p+alp / WH P’ lv|Pdz

> (1 alaP2Q - p+atr-1) (52 p) ) [ o

So we arrive at

o [ o = pala [ L 192V, Vs
i G

(Vyd,Vig|v|P)ydz

/
[ [waor+ @ vjar
/

|v|? da:—l—a]apz/ |v[Pdivey (|V gd|P~2d" PV d)da
J G

d 1 d|P
Yo op | as+ ajap2@ - p) [ VHE s

Cp)/ ]daVHu|pda:2C1(oz,Q,p)/ |V rv|Pde. (18)
G G

By applying Lemma 5 on the right hand side of inequality (18) and v = d“u, then we obtain

b
C(a,s,p,Q) (/ ’daVHUpdl'> _/ ‘de‘ ‘da ‘p*
G G

This proves inequality (17) in the case 1 < p < 2.
Case 2 < p < Q. The outline of proof is to estimate in both the upper and lower bound
of the following expression

—1
22202 [ (lad™u¥ i + Vg2 Viro = ad ™oV e, (19)
G

The upper bound estimate is obtained by applying Holder inequality, Minkowski inequality
and Hardy type inequality (14), respectively. On the other hand, lower bound estimate is
acquired by making use of Proposition 2 with v; = ad 'vVgd and vo = Vv — ad oV gd,
integral by parts, the divergence theorem and Hardy type inequality (14), respectively.
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Let us estimate the upper bound of expression (19), by denoting Cp, = 2”*2@ we have

c, / (Jad " oV sd| + |V o) P2V v — ad~ oV d2de
G

P

p—2
<Gy ([ aaovua + (Wuvpa) * ([ (G0 - ad o udra)
G G
1

1 p—2 2
P P P
<G, (/ \adlvadypdx> + (/ |vHvdex> (/ IV o — adludedex>
G G G
_9 p—2 2
p p P _1 p
<Cp 1+ | | / |V go|Pdz / Vv —ad  vVgdPds | . (20)
Q-p G G

Now we estimate the lower bound of expression (19), by using Proposition 2. We have

—1
2222V (0d 109 ] 4 V0] 2V v — a0V

p(p—1)
2

> 2lad YoV gd| + |Vgo|)P 2|V v — ad” oV gd|?

-1
Zp(pg )(|Oéd_1’UVHd‘ + Vv — ad WV gd|)P Vv — ad oV gdf?

>|VyoP — |ad oV gdP — plad oV gd|P 2 (ad vV gd, V gv — ad oV yd)

P
=Vl +(p - 1)|a|p‘21|0|VHd|p — palaP2olvP 2|V gd PV d, Vo).
By integrating both side of the above inequality, we arrive at

Op/(yad—lvad| + [V uo|)P 2|V gv — ad oV gd|*dz
G

[vl?

2/ |VavlPde + (p — 1)|af? \VHd|pd:c—a|oz|p_2/ \V g d|P~2(V d, V g |v|P)d
G ¢ G

p
—/ |VHv|pd:C+(p—1)|a|p/ ’ZL\VHd\pderamW?/ lv|Pdivy (|V gd|P~2V gd)dx
G G G

V gd|P
> [ 1Vinlede +alal 2@+ ap-1) [ 2L
G c dr
ch/ |VavlPde. (21)
G
By combining (20) and (21), we obtain
C) [ 1milPde > G0 Q) [ (Violda: (22)
G G
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By applying Lemma 5 on the right hand side of inequality (22) and v = d“u, then we obtain

Q-—s
Q- dls
C(ays,p,Q) </ |daVHupdx> ! 2/ %Wau\p*(s)dx.
G G

This proves inequality (17) in the case 2 < p < Q. O

Theorem 8 (Weighted Caffarelli-Kohn-Nirenberg inequality). Let G be a stratified group.
Let

1<p<@Q,¢g>1,r>0,0<a<l,
1 B

« 1 1~
p Q qg Q roQ (23)

where v = aoc + (1 — a)B. Then there exists a positive constant C such that
IV ad|* Y ul| gy < CllA |V rulllEs @)1V * P dullp, ) (24)

holds for all functions u € C§°(G), and if and only if the following conditions hold:

1oy _ (o1 _af(i_ B
T+Qa<p+ Q >+(1 a)<q Q)’ (25)
0<a—o<l, ifa>0and}1)+ac_21—i+5. (26)

Note that in Theorem 8 if we choose a = 1 then the condition (26) has the following form
1 a-o-1\"
0<a—o=a—v<1, andr-(—i—aa) ) (27)
p

since 7 = o. Furthermore, we have p <r < p* = % that allows to write r as follows

. _ P(@Q—1tp)
r=tp+(1—-t)p" = . 28
(1—-1) Q0 (28)
By combining (27), (28) and (a — o)r = tp we obtain the following relations:
p(Q — tp) <1 a—a—1>_1
— = |-+ ) 29
Q—p p Q %)
1 a—oc—1\"
tp=(a—o ( + ) . 30
(a=a) {5 0 (30)
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Note that tp equals s from Theorem 6. If we insert (29) and (30) into inequality (17) then we
arrive at

(a—0)(1+e=g=1)"" o1\ 1 1(1ya-0-1)""
/ ('de‘> (=) o) G257 dx§C</ |davHuypdx>”(” &) .
G G

d
(31)

Here, we showed that Theorem 8 implies Theorem 6 and inequality (31) will be used in
the proof of Theorem 8.

Proof of Theorem 8. First, we calculate the following term
/G‘VHd|(a'y)rd7r|u’rdx :/G :’de‘afaaf(lfa)ﬁdanr(lfa)ﬁ’u‘:|rdx (32>
_ / _|de‘a(oc—a)+(1—a)(a—ﬁ)dw+(1—a)/3|u|}Tdx
G L

r ar r(l—a
= [ [wnd =@ lul] [Vade D@l @
G-

1

Lacey (3
Z</ [|de‘(a—a)dg|u|}<;+ Q ) da:) '
G
r(1—a)
X (/ [|de|(a5>d5|uy}qu>
G

Now we prove inequality (24) by applying the inequalities (32) and (31),

a—oc—1

1
/ ’VHd‘(af’Y)rd'Yr’qux — (/ |VHd|(a'Y)rd’yr|u’rdx> r (/ ‘VHd|(a’Y)rd’yT‘u|rdx) -
G G G

1

1, a-0-1\"! a(E"’_ Q )
2(/ [‘de|(a0)d0a’dau’}<p+ Q ) d.’L‘)
G
r—1

1-a
x < / |de|q<a5>d5q|u\de> ’ < / |de|<M>Td'ﬂ"|urdx> '
G G

a 1
> C( / d"‘VHu\pd:r)p ( / \de|<a—5>Qd5qyuyqu> ’
G G
r—1
X < / |VHd|(a_7)"dw|u|”dx)
G
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We arrive at

l1—a

1 a
< / |VHd(O‘_7)’"dW]u|Td:v>T > c( / |davHu|Pda;)p < / |de|<a—ﬂ>qd/3Q|u|de> ’
G G G

We finish the proof. O

When a = v = § in Theorem 8, we obtain the following Corollary.

Corollary 9. Let G be a stratified group. Let

]-<p<Qa qu)T>0a OSCLS].,

1 « 1 « 1 «
- +=>0, - +=>0, -4+ =>0. 33
p Q ¢ Q roQ (33)
Then, there exists a positive constant C' such that
1dul (o) < CIA® IV szl [ g 1dul 155, (34)

holds for all functions u € C§°(G), and if and only if the following conditions hold:

1 1 1 1—a
=aG-g) T )

Note that Corollary 9 is a main ingredient to acquire the logarithmic Caffarelli-Kohn-
Nirenberg type inequalities in the next section.

3 Logarithmic Caffarelli-Kohn-Nirenberg type inequalities
Lemma 10. Let G be a stratified group. Let the parameters
l<p<r<g<oo, 6€]0,1],

satisfy

r p q
then we have the following Holder inequality

1dul [ @) < Nl ullf [ ull 2l (36)

for d®u € LP(G) N LY(G).
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Remark 11. Note that the Hélder inequality (36) is equivalent to the convezity of the function

é (i) _ %log ( /@ (dau)’"dx> ,
G en)ernll)

Proof of Lemma 10. A simple computation gives

that is

1 _ 6 1-6
fOT‘;—,’,,_F qi'

/ (d®u)"dx = / (d®u)?7 (d%u) =07 d
G G
(1—-6)r

< < /«; (d%)%@)ag ( /G (dau)qu> "

1:ﬁ+(1_9)r.
p q

since

O

Lemma 12 (A logarithmic Holder inequality). Let G be a stratified group. Let1 < p < q < o0,
then we have

(dau)p (dau)p p f (da‘Uqu%’
[ Vo ()

HdaUH]ip(G) HdauHiP(G) fG(da|u\)Pda:
for d*u € LP(G) N LY(G).

Proof of Lemma 12. Observe that the derivative of convexity of the function

4(h) = hlog ( / <daru|>idx> ,

dg(h) oL 1 [ (d®ul) " log(d®|ul)dx
—y =log (/G(d |u\)hdx> - G (@) i .

that is,

Then convexity of function ¢ in (0, 00) is equivalent to

do(h) _ é(h) — o(h)
dh — hi—h
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for h > h; > 0. Now by taking h := = and hi1 := =, we derive to

d*|ul)P log(d*|ul|)d 1 d*|u|)d.
Js 7 1og w>x_1%</@mﬂww>§ D g (el
Je(dfu|)Pdz p G q—p Je(dlul)pda
The left side of the above inequality can be rearranged in the following form
d®|ul)P log(d®|ul)d 1
f({}( |u| )P log(d® |u|)dx — Zlog (/ (do‘|u])pdx>
Je(dlul)pda p G
_ Jgld®ul)Plog(d*[ul)dz [g(d”|u]) log(||d"u||r(c))dx

Jo(dful)Pdz - Jo(dful)Pdz
4o p de
Sy UG R U0 P
G lld uHLp((G) (]]a« uHLp G))
The proof of Lemma 12 is finished. O

Now we state the logarithmic Caffarelli-Kohn-Nirenberg inequality on G.

Theorem 13 (Logarithmic Caffarelli-Kohn-Nirenberg inequality). Let G be a stratified group.
For a positive constant C', the inequality

[e% a,,\q daV u
/ () ((ld W' Ve < 1 10g (o H ’aH H‘Lq © (38)
o Tl 8 Tl ) @ = 1= laalll,

q
p*
is valid for parameters

1<qg<p’, 1<p<Q, ap+Q >0, ag+Q >0,
for every function d*|Vgu| € LP(G) and d*u € LY(G).

Proof of Theorem 13. We use Lemma 37 with ¢g = p, p =17, 1 < ¢ < r < oo and inequality
(34). This gives

(du)? (du)? 1
@108 | e | 4 < log (||du||9, ) — log (||d®u||?
/G HdO‘UHqu((;,) || dou HLq(G 1—q/r [ ( %] (G)> (‘ L‘Z(G))}
1 (1—a)q
< q|| e’ - a r(1q
S [1og (712 5 lld*ull s @7) = 10g (1 11%0(c )]
d*|V gul||4
LI (CqH | IHLP(G)>

- Q/T ||dau|‘%q(¢;)
1 || d|V zrul]|]
=———log | CY - L@ |
1—Q/P ||d “HLq(G)

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 50-70




Weighted and Logarithmic Caffarelli-Kohn-Nirenberg . .. 63

In the last line, we have used 1 — ¢/r = a(p* — q)/p* from 1/r = a/p* + (1 — a)/q. That
finishes the proof. O

Theorem 14 (Parametric logarithmic Caffarelli-Kohn-Nirenberg inequality). Let G be a
stratified group. Suppose

1<p<Q, p*zﬂ, 1< p?/q<p",
Q-p

ap+Q >0, ap®/qg+Q >0, u>0.
There exists a positive constant C such that

/ |d®u|P log |deulP g HVH(da“)Q/pHip(@) (39)
T — p
o a2, g 8 \ ldulll, ) ldul7,

p pC? p _
< log< > + log [|d%u|[P51
q—p*/p* elg—p*/p*)n)  a—p*/p* 2o )

for all functions u € LP(G) and Vy(d®u)?/? € LP(G).

Proof of Theorem 14. When o = 0 in the logarithmic Caffarelli-Kohn-Nirenberg inequality
(38), we have

q q 1 IV aulll7,
/ l; log 1; dr < — log C’q—) .
G ||U‘|Lq(@,) HUHLq(G) 1- P [u ”Lq(@

By taking p?/q instead of ¢ and substituting « with (d®u)?/? in above inequality, we arrive at

oy [P oy [P IV (d*w) 7|7,
/ Ld Iﬂ log Ld Y dz S%log cP ?(€)
o T, ¢ \Tlaall, g ) Sa=r/p Tl

p
— P g ||d®u
T sl

+

In the last line, we drag p/q from inside the expression of log and arrange to have a form as
(40). Now we add the following term

||VH(dau)q/p| |I£p((g)
ld*ull7, g

—p (40)

KAZAKH MATHEMATICAL JOURNAL, 25:1 (2025) 50-70



64 Bolys Sabitbek

to both sides of the above inequality, then we get

/ v ddap IV (dw) |},
o T — U
G Hdaquzp(@ HdauHLP (@) HdauHU’(G

» og( p||VH(da )q/pHiP(G)> - ||V (d®u )q/pHIZP(G)

~q—p*/p* ||dau‘|12p(@) ||dau|‘%p(@)
p a, ||P—4
+ 7(] 2 log ||d u||L,,(G)
— 7]92 —log (CPz) — pz + 7;0 log HdauHLP(G
q—p*/p q—p?/p*

where
IV 5 (d*w) 2P|, o
|[deull?

z =

If we maximize the right-hand side of the above inequality with respect to z, we get
/ [dul” [dul” IV (d*w)??|7,,
og T —
o ldull, g 8 \ Tld=ulll, dul[%,

p p p -
<P o <cp ) + log ||d®ul [
q—p*/p* enlg —p*/p*))  a—p*/p* 2o ey

That proves inequality (39). O

4 Application

Theorem 15. Let G be a stratified group. Suppose

1
1<p<@Q, ﬁ<m<ao<oo,t>0.

Let u(t) be a positive strong solution to d*u = L,(d“w)™. Then for a function d*u(0) € L*(G)
and d*u(t) € L*°(G), we have

[d*u(t)[| Lo (G) < C(Q, p,m, ag)||d*u(0 )HL%?&(W(Z’ D=y aop+Q<m(p n-1) (41)

for such C(Q,p, m,ag) is a positive constant.
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Proof of Theorem 15. Suppose that ag < r(t) < oo and 7(t) > 0 hold for r(¢). A straightfor-
ward calculation gives

1

d ar r r® o _i'(t) ar(t), r(t
4 (/d on Udm) | uHU@)(G)(TQ(t))log(/ﬁ O 0) g

1—r(t
[ldul (5

r(t)

/G (@) Tog(du(t)7 + r(t) (@ u()) O~ ai(t) ) da

= el {daur( ;

/[dau(t)]r(t) log(d®u(t))dx
G

L'r(t

#(t)]deul |}, ()¢

w2 [ euwy® (@)
= Il o) {/@d TRCAN VPO

Lr t) Lr(t) (G)

T2(t) Wy r(t)—1 ay -
/G(d () O~ a(t)d ]

(0l [

T2
—log [|[d%u(t )HLr(t)(G) ®) /(;Tdau(t)(dau(t)y(t)ldx]

/ (du(t)) D du(t)de = / (du(t))"D=LL, (du(t)™dx
G

G
_ /G<‘vH(dau(t))m‘p_QVH(do‘u(t))m) . VH((dau(t))r(t)_l)dx
= -—mPH(r(t) = 1) / (du(t)) = DE=D O =2y (dou(t) P
G

_ ppmp—l(r(t) -1) o, 'I{)ﬁ)«fﬂni%pfl)fl P i
- (T(t)+m(p—1)—1)p/(G‘WH(d ) da.

Let us have a function v such that (d®v)" = (d*u)P, then we get

1l gy = 1140l 2,
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We insert to

(du®)" | (@u@) \
/@ [ o8 <|‘d““‘|TT<G)> !

prmP (r(t) = 1) r? /
(O +m{p—1) - 1)p r||dau|rm

—/ (d®v)P log dx
G 1|7, Hd v\l
2

Pl -1 oS
(r(t) +m(p—1) — 1)P 7||d> vHLp G)/IVH(d )7 e,

r(t)+m(p—1)—1 |P

(d%u)| » dz

where ¢ = pw. Here a parameter p from the parametric logarithmic Caffarelli-
Kohn-Nirenberg type inequalities is given by p = ;% By applying Theorem 39,
we obtain

d

7||dau\|Lr(G)

(d*v ) p a
= |ld®ul|r (@) / do——F [Tyt pde
© ||dav\| o[}, 0], g, Jo
PP P r(p—q)
< ||d%ul| - —_— Cc? > + log ||d“ul| ] . 42
el @) 73 g g [ < en(q — p?/p*) p ldullz @) (42

Then inequality (42) can be seen as
h < F(t)hlog(h) + G(t)h, (43)
where

h(t) := [|d"u()|| - ()
T pP—q
rq—p?/p*’

T P P
Gt) = ——+  Jog|OP—— £ ).
®) r2q—p2/pr o ( en(q —p2/p*)>

The solving (43) is a simple calculation but very long, so we refer to [19] where @ instead
of n in our case. Then for ag < b < 0o we have

F(t):=

ag(bp+Q(m(p—1)—1)) (b—ap)Q
[ u()||v@) < C(Q,p,m, a0, b)||d*w(0)]] ey’ ™"t Heorsim=0-17, (44)
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b—mg

where C(Q, p, m,ap,b) = C (b*ml) "M with my = mg = ag, and

bmo

my = <1—§*> (ao <1—;*>+m(p—1)—1>, ma = ag <1—§*>+m(p—1)—1.

Making use of L’Hospital, it can be shown that for b — oo the constant is C(Q, p, m, ag, b) <
oo. This proves

o « aoerQ(fr?(I;fl)*l) —W
du(®)] |6 < C(Q.p,m, a0)][d*u(0)] 72012 PG
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Coburbexk b.M. Canmakrairan »koue jgorapudmaik Kaddapemm-Kon-Hupenbepr rumri
TEHCI3IIKTEp cTpaTu(UKAIMSIIAHFaH TOITAap MeH KoJinaHbaiap OofbIHIIA

Knaccukanbik Kadbdaperin—Kona-Hupenbepr TercizaikTepi amramr per 1980-KbLigaphb
EBkimmy kericriringe Kypbuibil, CoboJieB »KoHe Xapau TeHCI3MIKTepl apachblHIarbl HHTEPIIO-
JNus yOrH 6ipryTac Heri3 ycebiHAbl. By reHcismikrepai crparudukanusianrad (Hemece
6iprekti Kapmno) Jlu Tonrapsina xkammsiaay 2000-KbUIIapbl, 6acklHIa CYOLUINITHKAIBIK,
TaJIay MeH I'eOMETPUSIBIK OJIIEM TEOPHUSICHIHBIH, bIKIAJILIMEH OacTaslabl. Bysl KeHeldTy Tom-
TBHIH, KYPBLIBIMBI, MACIITa0Tay CUMMETPHUSICHI KoHe (PYHKITHOHAJIBIK TEHCI3IIKTep apachiH-
narpl Oail GaitmanbicTapabl amThl. Byin mMakadama 6i3 crparudukaiusiiagrad Jlu ToObIHIA
casmakTasran kone jgorapudmiaik Kaddapemm-Kon-Hupeunbepr tunri Tencizmikrepai op-
narambl3. Hormkecinge, 6i3 OHBI Kejeci TE€HIEYIiH OH KVIITI INEINMIEPIHIH CaJIMaKTAJIFAH
yJbTpa KOHTpakTuBTLIK (ultracontractivity) mosesjiey yiiiH KOJIJIaHA ajlaMbl3:

ou
d*— = L,(d%u)™,
myagarsl L f = Vg (|[VyfIP —2Vuf) - p-cy6-Jlannacuan, d cy6-Jlamianuan yrmin ipresi me-
mriMiMeH GaiijiaHbICTBL GipTeKTi HOpMa, XKoHe o € R, 1 < p < Q.
Tyitin cesaep: Kadapemnn-Korn-Hupenbepr rtencizairi; morapudmaix Kaddapemrtn-

Kon-Hupenbepr reHciziri; crparundukausianrad JIlu ToObI.

Caburbex B.M. Becopoe n jnorapudgmudeckne HepapeHcTBa Tuna Kaddapemm-Kona-
Hupenbepra Ha crparuduInpoBaHHBIX IPYIIIAX U UX TPUIOYKEHUS

Knaccuueckue mepasencrsa Kaddapenin—Kona—Hupenbepra, BriepBbie ycTaHOBICHHBIE
B €BKJINJIOBOM MpocTpancTBe B 1980-x rojax, mpejocTaBuiin €JIMHYI0 OCHOBY JIJIsi HHTEPIIO-
Jgsinan Mexkay HepaseHcTBamu CobosieBa m Xapau. VIx o6obmieHne Ha cTpaTHUITTPOBaH-
uele (mau ogHopoaabie Kapuo) rpymmst JIu Hadasocs B Hadaste 2000-X TO0B O/ BIMSTHEEM
CyOaITUIITUYECKOTO aHAJIN3a U TEOPUU NEOMETPUIECKON Mephl, BBISBUB OOraThle B3aUMOCBSI-
31 MEXK/ly CTPYKTYPO# IDYIIIbI, CHMMeTpHell pacTsikenuili u (pyHKIINOHATLHBIMUA HEPaBEH-
crBaMu. B 9T0i1 cTraThe MBI yCcTaHAB/IUBAEM BECOBBIE M JIOTAPU(PMUIECKIE HEPABEHCTBA, THUIIA
Kaddapenm-Kona-Hupenbepra na crparudunuposanuoit rpymme Jlu. Kak ciiencrsue, Mbr
MOXKEM MPUMEHUTH UX JJIsi JOKA3aTEIbCTBA BECOBOU YJIBTPACKUMAEMOCTU IOJIOXKUTETbHBIX
CUJIbHBIX PEIICHU

4" = L),
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rie L,f = Vu(|Vaf P2V f) — p-cy6-Jlamnacuan, d — OJHOPOAHAS HOPMA, CBA3AHHAS C
dyHIaMeHTABHBIM perenueM st cyo-Jlammacnana n o € R, 1 < p < Q.

Kuarouesbie caoBa: Hepasencrro Kaddapenm-Kona-Hupenbepra; porapudmvuaeckoe
mepasercTBo Kaddapemm-Kona-Hupenbepra; crparudurmpoBannas rpyiima Jlu.
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