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Abstract. In this paper, we study special subclasses of theories based on the connection between the
amalgamation property and the joint embedding property, as well as between the h-amalgamation prop-
erty and the joint continuation property. Our results are presented in both the classical first-order logic
and the positive logic, which exhibit a parallel structure. We establish sufficient conditions under which
the amalgamation property implies the joint embedding property, and conversely; the h-amalgamation
property implies the joint continuation property and vice versa. Furthermore, we investigate the preser-
vation of these subclass links under extensions of the given theory.

Keywords. Existentially closed models, amalgamation property, joint embedding property, positive
model theory, positively closed models, h-amalgamation property, joint continuation property, positively
existentially prime Jonsson theories.

Introduction

This paper relates to both the so-called “East” direction of Model Theory that originated from
Abraham Robinson’s work [1] and the positive model theory, which was first studied by Itai
Ben Yaacov and Bruno Poizat in [2].

Model theory, a fundamental branch of mathematical logic, has evolved through two
distinct historical and methodological traditions. The first, often referred to as the “Western”
tradition, originated from the pioneering works of Alfred Tarski and Robert Vaught. This
approach primarily emphasizes the study of complete theories, and classification of models

2020 Mathematics Subject Classification: 39B82; 44B20; 46C05.
Funding: This research is funded by the Science Committee of the Ministry of Science and Higher Edu-

cation of the Republic of Kazakhstan (Grant No. AP23489523).
DOI: https://doi.org/10.70474/18bp7004
© 2025 Kazakh Mathematical Journal. All right reserved.
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via stability and stability hierarchies, and techniques based on compactness and completeness
theorems. A crucial aspect of this tradition is the use of elementary embeddings as the
primary morphisms, ensuring that the logical structure is preserved precisely. It has been
deeply connected with algebraic geometry, topological model theory, and, more recently, the
development of o-minimality and geometric stability theory.

In contrast, the “Eastern” tradition of model theory, rooted in the works of Abraham
Robinson and Anatoly Maltsev, focuses on methods derived from algebra and non-classical
logic, particularly the model-theoretic study of algebraic structures through the lens of syn-
tactical constructs. This tradition places a strong emphasis on non-elementary classes, Robin-
sonian concepts such as model-completeness, and the use of methods from universal algebra
to investigate the nature of mathematical structures. Unlike the Western tradition, which
predominantly operates within first-order logic with complete theories and elementary em-
beddings, the Eastern tradition explores weaker axiomatizations where the morphisms under
consideration are more general, often allowing isomorphic embeddings. The research presented
in this article is primarily aligned with the latter tradition.

A significant development within the Eastern tradition is the emergence of positive logic
and positive model theory, introduced by Itai Ben Yaacov and Bruno Poizat [2]. Unlike
classical first-order logic, where negation plays a central role, positive logic restricts itself to
the study of theories that are preserved under positive embeddings—embeddings that respect
existentially quantified formulae without involving negation. Instead of considering isomor-
phic embeddings, positive logic focuses on homomorphisms restricted to positive formulae.
This perspective leads to a reformation of classical notions: the concept of inductive theories
is generalized to h-inductive theories, existentially closed models are replaced by positively
closed models, the amalgamation property transforms into the h-amalgamation property, and
the joint embedding property is reformulated as the joint continuation property. These mod-
ifications provide a more flexible and structurally rich approach to model theory, particularly
in contexts where classical elementary embeddings are too restrictive.

Further advancements in this area include the work of B. Poizat and A.R. Yeshkeyev [3]
on positive Jonsson theories, whose attributes are h-inductiveness, h-amalgamation property,
and joint continuation property. In this development, the authors extend the classical Jonsson
theory framework into the realm of positive logic, redefining key Robinsonian notions to fit
within this weaker logical setting. Their work provides new insights into the behavior of
models under positive conditions, enriching the Eastern tradition’s approach to structural
analysis. Thus, the main object of this study is positive Jonsson theories.

More studies in positive model theory have been conducted in the framework of the
Robinsonian tradition by Itai Ben Yaacov [4], Bruno Poizat and Aibat Yeshkeyev [5], Almaz
Kungozhin [6] and Mohammed Belkasmi [7, 8, 9, 10, 11, 12].

Previously, Aibat Yeshkeyev defined subclasses of inductive theories regarding the amal-
gamation and joint embedding properties. It is well known that the amalgamation property

Kazakh Mathematical Journal, 25:2 (2025) 6–18



8 Sultan M. Amanbekov, Ayabat Onerkhaan, Indira O. Tungushbayeva

and joint embedding property are independent of each other; however, there are cases where
one implies the other, depending on the specificity of the class of models of the theory un-
der consideration. In that work, we considered these classes of theories in both a classical
first-order logic and a positive logic context. In this paper, we provide some sufficient condi-
tions for inductive theories to belong to some of the distinguished classes, and show when the
property of the connection between amalgamation and joint embedding can be preserved in
extensions of the given theory. We also generalize these notions for positive model theory and
similar results in which the h-amalgamation property implies the joint continuation property
and vice versa.

Paper structure. This paper is structured as follows. The introduction is followed by
two main sections and a reference list. In Section 1, we provide an overview of fundamental
concepts in Robinsonian model theory, describe the specific subclasses of inductive theories
concerning the amalgamation and joint embedding properties, and show some results in the
framework of the presented notions. Section 2 describes the necessary concepts of positive
model theory and introduces new subclasses of h-inductive theories based on the connection
between the h-amalgamation property and the joint continuation property, along with key
results characterizing these notions.

1 Amalgamation and joint embedding properties in classical logic

As mentioned in Introduction, model theory can be studied in various frameworks. In classical
Robinsonian model theory, the central objects of interest include the specific axiomatization
of theories under consideration, key properties of embeddings such as the amalgamation and
joint embedding properties, the existence of specific models such as existentially closed models,
algebraically prime models, and some others regarding the considered types of embeddings.
In contrast, positive model theory provides a different perspective, modifying fundamental
notions in restricted signature while preserving key structural aspects. In this section, we
outline these concepts in the Robinsonian framework and give related results before comparing
them to their positive counterparts in the next section.

Let us start with the notion of an inductive theory, which plays a crucial role in the
classical “eastern” tradition of model theory.

Definition 1. [13, p. 62] A theory T is called inductive if it is closed under inductive unions,
that is, whenever (Mi)i∈I is a chain of models of T , their union

⋃
i∈I Mi is also a model of T .

It is well known that a theory T is inductive iff it is ∀∃-axiomatizable. Another well-known
fact on inductive theories is related with the existentially closed models of such theories.
Firstly, we recall the definition of an existentially closed model of a theory.

Definition 2. [13, p. 97] A model M of a theory T is said to be existentially closed if for
every embedding M → N into another model N of T , and every existential formula φ(x) with
parameters from M that is satisfiable in N , is also satisfiable in M .

Kazakh Mathematical Journal, 25:2 (2025) 6–18
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The following fact in existentially closed models is well-known from [14].

Theorem 3. Let T be an L-theory, M ∈ Mod(T ), and let T∀ be the set of all universal
L-consequences of T . Then the following conditions are equivalent:

1. M is existentially closed over T ;

2. M is existentially closed over T∀.

It is known that for any inductive theory T , for any model A of T , there is a model
M existentially closed over A such that A is embedded in M , and this fact emphasizes the
significance of the notion of existentially closed models in the study of inductive theories.
However, another considerable class of models is the class of algebraically prime models.
While existentially closed models ensure the maximal satisfaction of existential conditions
within embeddings, algebraically prime models represent the minimal elements in the class of
models of a theory. Recall the definition of an algebraically prime model.

Definition 4. [15] A model M of a theory T is called algebraically prime if for every model
N of T , there is an embedding of M into N .

If a theory T has algebraically prime models, the class of all such models of T is denoted
by AT . Similarly, ET denotes the class of all existentially closed models of T .

Note that the notion of an algebraically prime model generalizes the concept of a prime
model [13, p. 85], where elementary embeddings are considered.

Given a theory T , the existence of existentially closed models and algebraically prime
models provides the special properties of T , and there are cases when a theory admits a
model that is both existentially closed and algebraically prime. In this way, the concept of
existentially prime theory was defined by A. Yeshkeyev in [16].

Definition 5. [16] An L-theory T is called an existentially prime theory if there is a model
M of T such that M ⊆ AT ∩ ET , that is, M is both algebraically prime and existentially
closed.

Another key aspect of studying models of a theory is the structure of embeddings between
them. Two fundamental properties in this regard are the amalgamation property (AP) and
the joint embedding property (JEP), which play a significant role in this study.

Definition 6. [13, p. 80] A theory T has the amalgamation property if for any three models
M1, M2, M3 of T such that there exist elementary embeddings M1 → M2 and M1 → M3,
there exists a model M4 of T and embeddings M2 → M4 and M3 → M4 that make the
corresponding diagram commute.

Definition 7. [13, p. 80] A theory T has the joint embedding property if for any two models
M1 and M2 of T , there exists a model M3 of T into which both M1 and M2 can be embedded.

Kazakh Mathematical Journal, 25:2 (2025) 6–18



10 Sultan M. Amanbekov, Ayabat Onerkhaan, Indira O. Tungushbayeva

One of the classical results on theories admitting JEP is the following theorem:

Theorem 8. [17, p. 365] Suppose T is an L-theory that admits JEP. Let A and B be exis-
tentially closed models of T . Then each ∀∃-sentence that is true in A is true in B as well.

Generally, AP and JEP are independent of each other, which is supported by counterex-
amples of W. Forrest in [18]. However, there are partial cases where the specific construction
of the class of models of a theory provides the implication of JEP from AP and vice versa. In
this manner, the following definitions were introduced in [19] by A. Yeshkeyev:

Definition 9. Let K be a class of L-theories. We call this class (or a theory from K, for
short, when the class can be recovered from the context)

1. an AP-class (an AP-theory), if each theory from K, which has the amalgamation prop-
erty (AP), also admits the joint embedding property.

2. a JEP-class (a JEP-theory), if each theory from K, which admits the joint embedding
property (JEP), also satisfies the amalgamation property (AP).

There are examples for each type of the theories. As mentioned in [19], the group theory,
the theory of fields of a fixed characteristic, the theory of differential fields of characteristic
0, the theory of differentially perfect fields of characteristic p are strongly convex theories,
which means that the class of strongly convex theories is an AP class. The class of complete
inductive theories, which are also model complete, is an example of a JEP-class. This class
contains theories such as the theory of dense linear orders without endpoints, the theory of
algebraically closed fields of a fixed characteristic, and the theory of differentially closed fields
of a fixed characteristic.

In this paper, we demonstrate some sufficient conditions of being an AP-theory or JEP-
theory for an inductive L-theory. In this context, the following two propositions describe
AP-theories and JEP-theories.

Proposition 10. Let T be an L-theory such that AT ̸= ∅ and T admits AP. Then T is an
AP-theory, that is, the class of all L-theories, which have algebraically prime models, is an
AP-class.

Proof. We need to show that, under the given conditions, T has JEP. Let A and B be two
arbitrary models of T . Since T has an algebraically prime model, there is a model M such that
M is embedded both into A and B. Then due to the fact that T admits the amalgamation
property, there is a model N such that both A and B are embedded into N . Therefore, T
has the joint embedding property.

Proposition 11. Let T be an L-theory such that T admits JEP and for any two models A
and B of T , if there is an embedding f : A → B then f is unique. Then T is an AP-theory.

Kazakh Mathematical Journal, 25:2 (2025) 6–18
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Proof. Here we need to show that T admits AP. Let A, B and C be models of T such that
there are embeddings f1 : A → B and f2 : A → C. Since T has the joint embedding property,
there exists a model D ∈ Mod(T ) and embeddings g1 : B → D and g2 : C → D. In force of
the fact that every embedding of models in Mod(T ) is unique, we obtain that f1 · g1 = f2 · g2.
Thus, T has the amalgamation property.

The given conditions demonstrate the semantic specificity of the connection of AP and
JEP within the class of models of a single theory. However, the property of being an AP-
theory (JEP-theory) can be obtained for the extensions of the given theories in L. In this
context, we consider the case of two theories T and T ′ such that T ⊆ T ′. To specify the
link between the classes of models of T and T ′, we also restrict this case to mutually model
consistent theories. Recall the definition of mutually model consistent theories.

Definition 12. [13, p. 157] Let T1 and T2 be L-theories. T1 and T2 are called mutually
model consistent, if for any model A of T1, there is a model B of T2 such that there exists an
embedding A → B, and vice versa.

The following fact on mutually model consistent theories is well-known:

Proposition 13. [13, p. 158] If T1 and T2 are mutually model consistent then T1∀ = T2∀,
where Ti∀ is the set of all universal L-sentences that are deduced from Ti.

We apply Propositions 10 and 11 to the case of two mutually model consistent theories
and obtain the following results.

Theorem 14. Let T be an inductive existentially prime L-theory, and let T ′ be an inductive
L-theory such that T ⊆ T ′ and T ′ is mutually model consistent with T . Then if T is an
AP-theory, T ′ is also an AP-theory. In other words, let K be a class of inductive existentially
prime L-theories, and let K ′ extend K in the following way: if an inductive theory T ′ contains
some T ∈ K and T ′ is mutually model consistent with T , then T ′ ∈ K ′; then K ′ is an AP-
class.

Proof. Firstly, let us show that ET = ET ′ . Note that T and T ′ are mutually model consistent,
which means that T∀ = T ′

∀. Let A ∈ ET , then, according to Theorem 3, A is existentially
closed over T∀ = T ′

∀ and, consequently, over T ′. Therefore, A ∈ ET ′ . Conversely, if B ∈ ET ′ ,
B is an existentially closed structure of T ′

∀ = T∀ and T . Hence, ET = ET ′ .
Now, let M be an existentially closed algebraically prime model of T , that is M ∈ ET∩AT .

As we showed, ET = ET ′ , therefore M ∈ ET ′ . Since T ⊆ T ′, Mod(T ′) ⊆ Mod(T ), then M is
an existentially closed model of T ′ that is embedded into any model of T ′, which means that
T ′ is an existentially prime L-theory. Hence, AT ′ ̸= ∅.

Now, we show that T ′ admits AP. Let A, B, C be models of T ′ such that there exist
embeddings f1 : A → B and f2 : A → C. Note that A, B, C ∈ Mod(T ). Then there is a
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model D ∈ Mod(T ) and embeddings g1 : B → D and g2 : C → D and the diagram of these
embeddings commutes, as T admits AP according to the condition of the theorem. If D is
a model of T ′, then T ′ has AP. If D is not, there is an existentially closed model N of T
such that D → N . Since T is an AP-theory, T has JEP, and according to Theorem 8, M
and N satisfy the same ∀∃-sentences in L. Since T ′ is inductive and any inductive theory
is ∀∃-axiomatizable, N ∈ Mod(T ′). Let g : D → N . Then the embeddings g1 · g : B → N
and g2 · g : C → N complete the diagram of the amalgamation of the models A, B, C, N in
Mod(T ′), and this diagram commutes. Therefore, T ′ admits AP.

Owing to Theorem 10, T ′ is an AP-theory.

Theorem 15. Let T be an inductive L-theory such that for any embedding f : A → B, where
A and B ∈ Mod(T ), f is unique. Let T ′ be an L-theory such that T ⊆ T ′ and T is mutually
model consistent with T ′. Then if T is a JEP-theory, then T ′ is also a JEP-theory.

Proof. Let A,B ∈ Mod(T ′). Since T ⊆ T ′, the inclusion Mod(T ′) ⊆ Mod(T ) holds; hence
any embedding g : A → B is unique.

Now we show that T ′ admits JEP. Let A,B ∈ Mod(T ′). It is clear that A and B are
also models of T . Then there is a model C of T and embeddings f : A → C and g : B → C.
If C is a model of T ′, then T ′ is also has JEP. If C is not, we may consider an existentially
closed model M of T such that C is embedded into M . Since T and T ′ are mutually model
consistent, ET = ET ′ ; therefore M is a model of T ′. Thus, A and B are embedded in a model
of T ′, and T ′ admits JEP.

Applying Theorem 11, we obtain that T ′ is a JEP-theory.

2 The connection of APh and JCP for h-inductive

In this section, we present the results on model-theoretic link between h-amalgamation prop-
erty and joint continuation property that are positive-logic analogues of the results of the
previous section.

First, we give some fundamental definitions and facts on positive model theory.
During this article, we will use the denotation L+ for a language in positive logic by the

meaning of [3].
Let L+ be a countable language involving individual constants, functions, and relations.

L+ also contains the binary relation of equality and a 0-ary symbol ⊥ denoting antilogy.
Unlike classical Robinsonian model theory, where embeddings are typically isomorphic

in nature, positive model theory focuses on homomorphisms as the primary type of model-
theoretic inclusion. This shift reflects the broader semantic framework of positive logic, which
emphasizes the preservation of positive formulae rather than isomorphisms and elementary
equivalence.
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Definition 16. [3] A map h from an L+-structure M to an L+-structure N is called a
homomorphism between M and N , if for every individual constant c, every function symbol
f and every relation symbol r of L+, and every tuple ā = (a1, . . . , an) of elements of M the
following holds:

1. h(cM ) = h(cN );

2. h(fM (a1, ...an)) = fN (h(a1), ...h(an));

3. if M |= rM (a1, ...an) then N |= rN (h(a1), ...h(an)).

When there exists a homomorphism from M to N , we say that N is a continuation of M .
Note that a continuation of M is nothing but a model of the positive diagram Diag+(M) of
M , which is the set of atomic sentences satified by M in the language L+ obtained by adding
to the language individual constants naming the elements of M .

According to [3], a positive formula is obtained from the atomic formulae by the use of
∨,∧ and ∃. Note that there are no universal quantifiers. A positive formula can be written
in prenex form as (∃x̄)φ(x̄), where φ is positive quantifier-free; φ in turn can be written as a
finite disjunction of finite conjunctions of atomic formulae.

Definition 17. [3] Let M and N be L+-structures, and let h be a homomorphism between
M and N . If every tuple ā in M satisfies the same positive formulae as its image h(ā) in N ,
we say that h is a pure homomorphism, or an immersion.

The next definition presents a positive version of the concept of an existentially closed
model.

Definition 18. [3] An L+-structure M is positively closed inside a class Γ of L+-structures
if every homomorphism from M to any N in Γ is an immersion.

We denote the class of all positively closed models of a theory T by PCT .
To define a positive analogue of an inductive theory, we need the following definition.

Definition 19. [3] A sentence is said to be an h-inductive sentence if it is equivalent to a
finite conjunction of sentences each of them declaring that a certain positively defined set is
included into another. Such a simple h-inductive sentence has the form (∀x̄)(∃ȳ)φ(x̄, ȳ).

In positive logic only h-inductive sentences are under consideration.
In [3], B. Poizat and A. Yeshkeyev defined an inductive limit of a chain of models,

where the authors considered homomorphisms, possibly not injective. The following defi-
nition presents the analogue of the concept of an inductive theory and given via the notion of
inductive limits in the sense of positive logic.

Definition 20. [3] An L+-theory T is said an h-inductive theory, if it is equivalent to a set
of inductive L+-sentences.
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It is known that the class of models of any h-inductive theory is h-inductive, that is closed
under the union of chains in sense of inductive limits. Moreover, in an h-inductive class, every
point can be continued into a positively closed element.

The following definitions generalizes the notion of mutually model consistent theories in
the context of positive logic.

Definition 21. [3] Two h-inductive L+-theories T and T ′ are called companion, if every
model of one of them can be continued into a model of the other.

Similarly to the classical fact in first-order model theory, companion theories admit the
following property concerning positively closed models:

Proposition 22. [3] Let T and T ′ be L+-theories that are companion. Then PCT = PCT ′ ,
that is, the class of all positively closed models of T is equal to the class of all positively closed
models of T ′.

Just as algebraically prime models serve as distinguished representatives in classical model
theory, positive model theory features an analogous notion of canonicity. These models cap-
ture the minimal structural essence of a theory within the framework of homomorphisms
under consideration.

Definition 23. [3] Let T be a theory in L+. A model A ∈ Mod(T ) is called a prime model
of T , if for any model B ∈ Mod(T ), there is a homomorphism f : A → B.

We denote the class of all prime models of T by PT .
By analogy with the concept of existentially prime theories in first-order logic, the fol-

lowing concept was defined by A. Yeshkeyev:

Definition 24. An L+-theory T is called a positively existentially prime theory, if there is a
model M of T such that M ⊆ PT ∩ PCT .

Note that if M is a positively closed prime model of T , for any A ∈ Mod(T ), a homo-
morphism f : M → A is an immersion.

We now turn to two fundamental properties in positive model theory: the h-amalgamation
property and the joint continuation property. These properties, originally studied in classical
model theory as the amalgamation property and the joint embedding property, respectively,
take on a distinct character in the positive setting, where homomorphic rather than isomorphic
embeddings govern the structure of models.

Definition 25. [2] An h-inductive theory T has the h-amalgamation property (APh) if,
whenever there are two homomorphisms f : A → B and g : A → C, where A, B, and
C ∈ Mod(T ), there is a model D ∈ Mod(T ), and homomorphisms f ′ : B → D and g′ : C → D
such that f · f ′ = g · g′.
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Definition 26. [2] An h-inductive theory T has the joint continuation property (JCP) if
for any two models A,B ∈ Mod(T ) there is a model C ∈ Mod(T ) and homomorphisms
f : A → C and g : B → C.

In terms of positive model theory, A. Yeshkeyev introduced specific subclasses of h-in-
ductive theories that are distinguished by the connection between the h-amalgamation prop-
erty and the joint continuation property. Understanding when one of these properties implies
the other within a given class of models provides valuable insight into the structural behavior
of positive theories.

Definition 27. Let K+ be a class of L+-theories T . K+ is called

1. an APh-class, if any T ∈ K+, which admits h-amalgamation property, admits also joint
continuation property.

2. a JCP-class, if each theory T ∈ K+, which admits joint continuation property, also has
h-amalgamation property.

We call a theory T an APh-theory (JCP-theory), if T ∈ K+, where K+ is an APh-class
(JCP-class) in cases when then class K+ can be recovered by the context.

The following fact was observed in [3]:

Theorem 28. [3] Let T be an L+-theory such that PT ̸= ∅ and T admits APh. Then T
admits JCP.

Thus, Theorem 28 states that an L+-theory T is an APh-theory, if it admits APh and
has a prime model.

We now present our main results. First, we provide a sufficient condition for a theory to
be a JCP-theory.

Theorem 29. Let T be an L+-theory such that T admits JCP and for any two models A and
B of T , if there is a homomorphism h : A → B then h is unique. Then T is an APh-theory.

Proof. First, we prove that T admits APh. Let A, B and C be models of T such that there are
homomorphisms h1 : A → B and h2 : A → C. T has joint continuation property; therefore,
there exists a model D ∈ Mod(T ) and homomorphisms h′1 : B → D and h′2 : C → D. In
force of the fact that every homomorphism of models in Mod(T ) is unique, we obtain that
h1 · h′1 = h2 · h′2. We obtain that T admits h-amalgamation property.

Next, we examine the preservation of these properties under companion extensions.
Specifically, we establish conditions under which a theory’s status as an APh-theory or a
JCP-theory is preserved by its companion extension.

Theorem 30. Let T be an h-inductive positively existentially prime L+-theory, and let T ′

be an h-inductive L+-theory such that T ⊆ T ′ and T ′ is a companion of T . Then if T is an
APh-theory, T ′ is also an APh-theory.
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Proof. Suppose that M is a positively closed prime model of T . Due to the condition of the
theorem, T and T ′ are h-inductive theories that are companion. According to Proposition 22,
PCT = PCT ′ ; then M ∈ PCT ′ . Since T ⊆ T ′, Mod(T ′) ⊆ Mod(T ), then M is a positively
closed model of T ′ that is continued in any model of T ′; hence, T ′ is a positively existentially
prime L+-theory. Therefore, PT ′ ̸= ∅.

Now we show that T ′ has APh. Let A, B, C be models of T ′ such that there exist
homomorphisms h1 : A → B and h2 : A → C. Note that A, B, C ∈ Mod(T ). The theory
T admits APh; therefore there is a model D ∈ Mod(T ) and homomorphisms h′1 : B → D
and h′2 : C → D such that the diagram of these continuations commutes. Suppose that D
is a model of T ′, then T ′ has APh. In case when ⊭ T ′, there is a positively closed model N
of T such that D is continued in N . Since PCT = PCT ′ , N ∈ Mod(T ′). Let h : D → N .
Then we may consider homomorphisms h′1 · h : B → N and h′2 · h : C → N that complete the
diagram of the h-amalgamation of the models A, B, C, N in Mod(T ′); moreover, this diagram
commutes. Therefore, T ′ has APh. Thus, according to Theorem 28, T ′ is an APh-theory.

Theorem 31. Let T be an h-inductive L+-theory such that for any homomorphism h : A →
B, where A,B ∈ Mod(T ), h is unique. Let T ′ be an L+-theory such that T ⊆ T ′ and T is a
companion of T ′. Then if T is a JCP-theory, then T ′ is also a JCP-theory.

Proof. Let A and B be two arbitrary models of T ′. It is clear that A,B ∈ Mod(T ), then any
continuation h : A → B is unique.

Let us show that T ′ has JCP. Since T admits JCP, there exists a model C of T and
homomorphisms h1 : A → C and h2 : B → C. In case when C is a model of T ′, then T ′ is
also has JCP. If C ⊭ T ′, we consider a positively closed model M of T such that C is continued
in M . Since T and T ′ are companion theories, PCT = PCT ′ according to Proposition 22;
hence, M |= T ′. We obtain that A and B are continued in a model of T ′; therefore T ′ has
JCP. Finally, we apply Theorem 29 and obtain that T ′ is a JCP-theory.
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Аманбеков С.М., Онерхаан А., Тунгушбаева И.О. ПОЗИТИВТI ЙОНСОНДЫҚ ТЕО-
РИЯЛАРДЫҢ АЯСЫНДА АМАЛЬГАМА ЖӘНЕ БIРЛЕСКЕН ЕНГIЗУ ҚАСИЕТТЕРI

Бұл мақалада амальгама қасиетi мен бiрлескен енгiзу қасиетiнiң, сондай-ақ h-амаль-
гама мен бiрлескен жалғастыру қасиетiнiң өзара байланысына негiзделген теориялардың
арнайы iшкi кластары зерттеледi. Қарастырылған нәтижелер бiрiншi реттi классика-
лық логикада да, позитивтi логикада да тұжырымдалады, алынған нәтижелер бойынша
олардың құрылымы ұқсас болып қалады. Амальгама қасиетi бiрлескен енгiзу қасиетiн
және керiсiнше, h-амальгама бiрлескен жалғастыру қасиетiн тудыратын жеткiлiктi шар-
ттар орнатылады. Сонымен қатар, осы қасиеттердiң зерттелетiн теориялардың кеңейту-
лерiнде сақталу мәселесi қарастырылады.

Түйiн сөздер: экзистенциалды тұйық модель, амальгама қасиетi, бiрлескен енгiзу
қасиетi, позитивтi модельдер теориясы, позитивтi йонсондық теориялар, позитивтi тұй-
ық модельдер, h-амальгама қасиетi, бiрлескен жалғастыру қасиетi, позитивтi тұйық жай
йонсондық теориялар.

Аманбеков С.М., Онерхаан А., Тунгушбаева И.О. СВОЙСТВА МАЛЬГАМИРО-
ВАНИЯ И СОВМЕСТНОГО ВЛОЖЕНИЯ В КОНТЕКСТЕ ПОЗИТИВНЫХ ЙОНСО-
НОВСКИХ ТЕОРИЙ

В данной статье исследуются специальные подклассы теорий, определяемые связью
между свойством амальгамирования и свойством совместного вложения, а также между
h-амальгамированием и свойством совместного продолжения. Рассмотренные результа-
ты формулируются как в классической логике первого порядка, так и в позитивной
логике, причем структура результатов представляется аналогичной. Нами показаны до-
статочные условия, при которых свойство амальгамирования влечет свойство совмест-
ного вложения, и наоборот, а также условия, при которых h-амальгамирование влечет
свойство совместного продолжения, и наоборот. Кроме того, исследуется вопрос сохра-
нения принадлежности теории к данным подклассам при расширении рассматриваемой
теории.

Ключевые слова: экзистенциально замкнутая модель, свойство амальгамирова-
ния, свойство совместного вложения, позитивная теория моделей, позитивные йонсо-
новские теории, позитивно замкнутые модели, свойство h-амальгамирования, свойство
совместного продолжения, позитивно экзистенциально простые йонсоновские теории.
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Abstract. The concept of pseudofinite structures emerged in the 1960s as part of efforts to understand
infinite structures that behave, in certain respects, like finite ones. A structure is pseudofinite if it satisfies
every first-order sentence that holds in all finite structures of the same language. This idea gained
importance through works by Ax, who studied pseudofinite fields, and later by Hrushovski and others
in the context of model-theoretic algebra. Pseudofiniteness has since played a key role in finite model
theory and asymptotic classes. The article considers universal theories T , the number of isomorphism
types of whose finite models is finite. It is proved that all cyclic submodels of a T -pseudofinite model
of this theory are finite.
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1 Introduction

The concept of pseudofinite structures emerged as part of a broader effort in model theory to
understand the relationship between finite and infinite models, particularly within first-order
logic. The development of this idea can be traced back to the 1960s, at the intersection of
logic, algebra, and number theory, when logicians began to investigate infinite structures that
could be characterized by the same first-order sentences as finite structures.

A structure is called pseudofinite if it is infinite, yet satisfies every first-order sentence that
holds in all finite structures of the same language. More precisely, a model M is pseudofinite
if it is elementarily equivalent to an ultraproduct of finite structures. This notion allows
logicians to treat certain infinite models as “limits” or idealizations of finite ones, enabling the
application of model-theoretic methods to problems originally rooted in finite mathematics.

2020 Mathematics Subject Classification: 03C60, 03C52.
Funding: This work was supported by the Ministry of Science and Higher Education (agreement № 075-

02-2025-1638/1 of 10.03.2025).
DOI: https://doi.org/10.70474/fxyhwj58
© 2025 Kazakh Mathematical Journal. All right reserved.



20 Sergey G. Chekanov, Evgeniy L. Efremov, Alena A. Stepanova

One of the foundational developments in the area was James Ax’s work in the late 1960s,
particularly his characterization of pseudofinite fields. In his landmark paper “The Elementary
Theory of Finite Fields” (1968), Ax proved that the theory of finite fields is complete and
that every pseudofinite field is elementarily equivalent to an ultraproduct of finite fields. He
further showed that pseudofinite fields are perfect, have exactly one extension of each finite
degree, and are pseudo-algebraically closed. This result brought substantial attention to the
utility of ultraproducts in connecting finite and infinite model-theoretic behavior.

Throughout the 1970s and 1980s, pseudofiniteness became an increasingly important
concept in various branches of mathematical logic and algebra. Researchers began to apply it
not only in the study of fields but also to groups, rings, and other algebraic structures. The
broader idea of interpreting “finiteness-like” behavior in infinite models proved valuable in
understanding the asymptotic properties of classes of finite structures, which became central
in finite model theory and descriptive complexity theory.

In the 1990s and 2000s, Ehud Hrushovski significantly expanded the theoretical framework
surrounding pseudofinite structures. His work on Zariski geometries and non-standard finite
fields used pseudofinite techniques to derive deep results in number theory and algebraic
geometry. Hrushovski’s application of model-theoretic tools to diophantine geometry and
the Mordell-Lang conjecture marked a new era in the interplay between logic and classical
mathematics.

Pseudofiniteness also plays a crucial role in the study of asymptotic classes, random
structures, and finite model theory, particularly in the context of computer science. The work
of Macpherson, Pillay, and others on simple theories and the classification of pseudofinite
groups has led to further connections with permutation group theory and stability theory.

Today, the study of pseudofinite structures continues to be a vibrant area within model
theory. It lies at the crossroads of logic, algebra, and combinatorics, providing a unifying
framework for analyzing infinite structures through the lens of finite approximations. This
duality remains a powerful conceptual and technical tool in both pure and applied model
theory.

Recently, the model theory of pseudofinite structures is an actively developing area of
mathematics. In [1–3] and [4], the model-theoretic properties of theories of pseudofinite fields,
groups, rings, and acts over monoids are studied. Clearly, given a pseudofinite model M of
some theory T in a language L and a sentence true in M, a finite model of this sentence may
not be a model of T . For example, if SA is a pseudofinite act over a monoid S and SA |= Φ,
then B |= Φ for some finite structure B in the language of acts over a monoid S, but B may
not be an act over S. So, it is natural to consider the concept of T -pseudofiniteness for a
theory T of a language L, which was introduced in [7]. A model M of a theory T in a language
L is called T -pseudofinite if every sentence in a language L true in M has a finite model, which
is a model of the theory T . It is clear that T -pseudofiniteness implies pseudofiniteness, and
pseudofiniteness implies T -pseudofiniteness for every finite axiomatizable theory T . In [7, 8],
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T -pseudofinite acts over a monoid S are considered, where T is a theory of all acts over S.
Also, we can note the articles [5] and [6]. In [5], S. Malyshev gives the description of types

of pregeometries with an algebraic closure operator for acyclic theories. In [6], N. Markhabatov
and Ye. Baisalov consider acyclic graphs approximated by finite acyclic graphs.

In this work, we consider universal theories T , the number of isomorphism types of whose
finite models is finite. We prove that all cyclic submodels of a T -pseudofinite model of this
theory are finite.

2 Preliminaries

A structure M in a language L is called pseudofinite if every sentence true in M has a finite
model. Let T be a theory of a language L. A model M of a theory T in the language L is
called T -pseudofinite if every sentence in a language L true in M has a finite model, which is
a model of the theory T .

Theorem 1 (A.A. Stepanova, E.L. Efremov, S.G. Chekanov [7]). Let T be a theory of a
language L and M be a model of T . Then M is a T -pseudofinite structure if and only if M
is elementarily equivalent to the ultraproduct of finite models of the theory T .

Theorem 2 (A.A. Stepanova, E.L. Efremov, S.G. Chekanov [3]). Every coproduct of finite
S-acts is a T -pseudofinite S-act, where T is the theory of all S-acts.

A class K of L-structures is called axiomatizable if there exists a set Z of sentences of the
language L such that for any structure A,

A ∈ K ⇐⇒ (the language of A is L and A |= Φ for all Φ ∈ Z). (1)

An axiomatizable class K of L-structures is called universal axiomatizable if there exists a set
Z of ∀-sentences of the language L for which (1) holds.

A substructure B of an L-structure A is called one-generated or cyclic if there exists
b ∈ B such that the intersection of all substructures of A containing b coincides with B. In
this case, we denote the substructure B by ⟨b⟩.

3 Main result

Theorem 3. Let l ∈ ω, let K be a universal axiomatizable class of L-structures such that the
cardinality of any finite cyclic structure in K is less than l + 1, and let T be a theory of K.
If A is a T -pseudofinite structure, then the cardinality of any cyclic substructure of A is less
than l + 1.

Proof. Let the hypotheses of the theorem be satisfied, and let A ∈ K be a T -pseudofinite
structure. By Theorem 1, A ≡ B, where B =

∏
i∈I Bi/D, Bi are finite models of T , D is an
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ultrafilter on I. Since T is a theory of an axiomatizable class K, then B ∈ K and Bi ∈ K
for all i ∈ I. We prove that the cardinalities of all cyclic substructures of B are less than
l + 1. Assume the opposite, that is, there exists a cyclic substructure ⟨b/D⟩ of B such that
|⟨b/D⟩| > l. Then B |= Φt0,...,tl(b/D), where

Φt0,...,tl(x) ⇋ ∃x0 . . . ∃xl

 ∧
0≤i<j≤l

xi ̸= xj ∧
∧

0≤i≤l

xi = ti(x)

 ,

ti(x) are some terms of the language L. By Los’s theorem,

J = {i ∈ I | Bi |= Φt0,...,tl(b(i))} ∈ D,

that is, |⟨b(i)⟩| > l for all i ∈ J . Since K is a universal axiomatizable class, then ⟨b(i)⟩ ∈ K
for all i ∈ J . But the cardinality of any finite cyclic structure in K is less than l + 1. A
contradiction. Consequently, the cardinalities of all cyclic substructures of B are less than
l + 1.

Now we prove that the cardinality of any cyclic substructure of A is less than l + 1.
Assume the converse, that is, there exists a ∈ A such that |⟨a⟩| > l. Then A |= Φg0,...,gl(a)
for some terms g0, . . . , gl of the language L. Since the structures A and B are elementarily
equivalent, B |= ∃xΦg0,...,gl(x). Therefore, there exists a cyclic substructure B of cardinality
greater than l. This contradiction proves the theorem.

4 Corollaries from the main result

Corollary 4. Let S be a monoid, l ∈ ω, K be the class of all S-acts such that the cardinality
of any finite cyclic S-act is less than l+1, and T be a theory of K. If SA is a T -pseudofinite
S-act, then the cardinality of any cyclic subact of SA is less than l + 1.

Proof. Since the class K is universal axiomatizable, this Corollary follows from Theorem
3.

By Corollary 4, we obtain the following corollary.

Corollary 5 (A.A. Stepanova, E.L. Efremov, S.G. Chekanov [7]). Let S be a monoid, the
number of isomorphism types of finite cyclic S-acts be finite, and T be a theory of S-acts. If
SA is a T -pseudofinite S-act, then every cyclic subact of SA is finite.

Corollary 6. Let G be an abelian group, the number of finite index subgroups of G be finite,
and T be a theory of all G-acts. Then GA is a T -pseudofinite G-act if and only if GA is a
coproduct of finite G-acts.
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Proof. Let GA be a T -pseudofinite G-act. It is well known that every act over a group G is a
coproduct of cyclic acts, and every cyclic act over G is isomorphic to a G-act GG/H, where H
is a subgroup of G and the unary operations on G/H are defined as follows: g(aH) = (ga)H
for any g, a ∈ G. Then by Corollary 4 GA is a coproduct of finite G-acts.

If GA is a coproduct of finite G acts, then by Theorem 2 GA is T -pseudofinite.

Corollary 7. Let K be the class of all abelian groups such that the number of isomorphism
types of finite cyclic subgroups of groups in K is finite, T be the theory of class K, and let G
be a pseudofinite (T -pseudofinite) group. Then G is a periodic group.

Proof. Since the class K is universal axiomatizable, this corollary follows from Theorem 3.
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Степанова А. А., Ефремов Е. Л., Чеканов С.Г. УНИВЕРСАЛДЫҚ T ТЕОРИЯЛА-
РЫНЫҢ T -ПСЕВДО-ШЕКТI МҮЛДЕЛЕРIНДЕ

Жалған ақырлы құрылымдар ұғымы 1960-жылдары, шексiз құрылымдарды белгiлi
бiр мағынада ақырлы құрылымдар сияқты сипаттау мақсатында пайда болды. Құрылым
жалған ақырлы деп аталады, егер ол сол сигнатурадағы барлық ақырлы құрылымдарда
орындалатын бiрiншi реттiк тұжырымдарға бағынса. Бұл идея алғаш рет псевдоақырлы
өрiстердi зерттеген Акс еңбектерiнде маңызға ие болды, кейiнiрек Хрушевский және
басқа зерттеушiлер модельдiк теориялық алгебра саласында оны әрi қарай дамытты.
Содан берi жалған ақырлылық ақырлы модельдер теориясында және асимптотикалық
кластарда маңызды рөл атқарады. Мақалада T әмбебап теориялары қарастырылады,
олардың шектi модельдерiнiң изоморфизм түрлерiнiң саны шектi. Бұл теорияның T -
псевдофиниттi моделiнiң барлық циклдiк iшкi модельдерi ақырлы болатыны дәлелдендi.

Түйiн сөздер: L-құрылымдардың әмбебап аксиоматизацияланатын класы, L-құры-
лымдар класының теориясы, псевдофиниттi құрылым, T -псевдофиниттi құрылым.

Степанова А. А., Ефремов Е. Л., Чеканов С.Г. О T -ПСЕВДОКОНЕЧНЫХ МОДЕ-
ЛЯХ УНИВЕРСАЛЬНЫХ ТЕОРИЙ T

Понятие псевдоконечных структур возникло в 1960-х годах в рамках попыток по-
нять бесконечные структуры, которые в определённом смысле ведут себя как конечные.
Структура называется псевдоконечной, если она удовлетворяет каждому предложению
первого порядка, которое выполняется во всех конечных структурах того же языка. Эта
идея приобрела значение благодаря работам Аксa, изучавшего псевдоконечные поля, а
позже Хрушевского и других — в контексте модельно-теоретической алгебры. Псевдоко-
нечность с тех пор играет важную роль в теории конечных моделей и асимптотических
классов. В статье рассматриваются универсальные теории T , число типов изоморфиз-
мов конечных моделей которых конечно. Доказывается, что все циклические подмодели
T -псевдоконечной модели этой теории конечны.

Ключевые слова: универсально аксиоматизирумый класс L-структур, теория клас-
са L-структур, псевдоконечная структура, T -псевдоконечная структура.
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Abstract. We investigate the monotonicity properties of unary functions definable in ordered groups
whose elementary theories are o-stable and have finite convexity rank. The notion of o-stability, combin-
ing o-minimality and stability, ensures tameness of types around cuts. Prior work established piecewise
or local monotonicity of definable functions in weakly o-minimal structures, with key contributions by
Pillay, Steinhorn, Wencel, and others. We build on these results by focusing on local monotonicity, n-
tidiness, and the depth of definable functions. In particular, we show that any such function is piecewise
n-tidy for some finite n, extending the theory of monotonicity beyond weakly o-minimal structures to a
broader o-stable context.

Keywords. O-minimal theory, NIP theory, piecewise monotonicity, local monotonicity, o-stable theory,
the convexity rank.

1 Preliminaries

The notion of o-stability combines both notions of o-minimality and stability. Roughly speak-
ing, a linearly ordered structure is o-stable if, for any cut, there exist a few complete one-types
that are consistent with this cut. B. Baizhanov and V. Verbovskiy showed in [1] that a weakly
o-minimal theory is o-stable. A sharper result follows from the description of weakly o-minimal
structures by B. Kulpeshov, that a linearly ordered structure is weakly o-minimal if and only
if any cut has at most two extensions up to complete one-types over this structure and the sets
of all realizations of these one-types are convex [5]. So, we can say that any weakly o-minimal
theory has Morley o-rank 1 and Morley o-degree at most 2, so, these theories are o-ω-stable.
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A. Pillay and C. Steinhorn started the investigation of the piecewise monotonicity of
definable unary functions in linearly ordered structures in [9]. R. Wencel extended their re-
sult to the class of non-valuational weakly o-minimal ordered groups [14]. D. Macpherson,
D. Marker, and C. Steinhorn introduced the notion of a local monotonicity and a tidy function
and proved that any unary function that is definable in a structure of a weakly o-minimal
theory is tidy. V. Verbovskiy introduced the notion of the depth of a function and proved
that any function definable in a structure of a weakly o-minimal theory has finite depth and
is piecewise n-tidy for some finite natural n [10]. Also, the question of monotonicity of unary
functions has been studied in many other articles for different classes of theories. V. Ver-
bovskiy and A. Dauletiyarova proved piecewise monotonicity of a unary function definable
in an ordered non-valuational group with an o-stable theory [13]. Here, we aim to consider
local monotonicity and the notions of n-tidy and the depth of a unary function definable in
an ordered group with an o-stable theory of a finite convexity rank.

In the following section, we provide some standard definitions and notations.
Let M = (M,<, . . . ) be a totally ordered structure, a be an element of M , and let A and

B be subsets of M . As usual, we write

a < B, if a < b for any b ∈ B,

A < B, if a < b for any a ∈ A and b ∈ B.

A partition ⟨C,D⟩ of M is called a cut if C < D. Given a cut ⟨C,D⟩, one can construct
a partial type {c < x < d : c ∈ C, d ∈ D}, which we also call a cut and use the same notation
⟨C,D⟩. If the set C is definable, then the cut is called quasirational; if in addition supC ∈ M ,
then the cut ⟨C,D⟩ is called rational. A non-definable cut is called irrational. If C = (−∞, c)
we denote this cut by c−, and if C = (−∞, c] we denote it by c+. If C = M , we denote this cut
+∞. The notation supA stands for such a cut ⟨C,D⟩, that C = {c ∈ M : c < supA}. If the
set C is definable we sometimes distinguish cuts defined by supC and infD as: supC stands
for ⟨C,D⟩ ∪

{
C(x)

}
and infD stands for ⟨C,D⟩ ∪

{
¬C(x)

}
. A cut ⟨C,D⟩ in an ordered

group is called non-valuational [7, 14] if d − c converges to 0 whenever c and d converge
to supC and infD, respectively. A cut, which is not non-valuational, is called valuational.
Observe that for a valuational cut ⟨C,D⟩, there is a convex non-trivial subgroup H such that
supC = sup(a + H) for some a, and this cut is definable iff the subgroup H is definable.
An ordered group G is said to be of non-valuational type, if any quasirational cut is non-
valuational. Note that G is of non-valuational type if and only if there is no definable non-
trivial convex subgroup in G.

The set of all cuts ⟨C,D⟩ that are definable in M and such that the set D has no smallest
element will be denoted by M . The set M can be regarded as a subset of M by identifying
an element a ∈ M with the cut

〈
(−∞, a], (a,+∞)

〉
. After such identification, M is naturally

equipped with a linear ordering extending (M,<): ⟨C1, D1⟩ ≤ ⟨C2, D2⟩ if and only if C1 ⊆ C2.
Clearly, (M,<) is a dense substructure of (M,<).
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A subset A of a totally ordered set M is called convex if for any a and b ∈ A the
interval [a, b] is a subset of A. The length of a convex set A is defined as sup{a− b : a, b ∈ A}.
A convex component of a set A is a maximal convex subset of A. The convex hull Ac of A is
defined as

Ac =
{
b ∈ M : ∃a1, a2 ∈ A (a1 ≤ b ≤ a2)

}
,

that is, it is the least convex set containing the set A.

2 Introduction

The aim of this paper is to investigate the properties of unary functions that are definable in
an o-stable ordered group whose convexity rank is finite, say, n.

Let M = (M,<, . . . ) be a totally ordered structure. Recall that a function can be defined
from its graph and for each function, it is easy to construct its graph. So, we consider an
arbitrary formula: Φ(x, ȳ). Let B be the set of all such b̄, that Φ(M, b̄) ̸= ∅. Given an element
b̄ we consider the definable set Φ(M, b̄). Then we can consider supΦ(M, b̄) as an element of
M . So, the set

{(b̄, supΦ(M, b̄)) : b̄ ∈ B}

defines the graph of some function f from B to M . The main property we consider here is
the monotonicity of a function. So, below, we define f(b̄1) ≥ f(b̄2) in terms of Φ. We prefer
to work with a formula Φ(x; ȳ) rather than with a function f(ȳ).

So, let Φ(x, ȳ) be an M -definable formula. We write

Φ(M, ȳ1) ≥ Φ(M, ȳ2), if M |= ∀x2∃x1[
2∧

i=1

Φ(xi, ȳi) → x2 ≤ x1]

it means that supΦ(M, ȳ1) ≥ supΦ(M, ȳ2). Then

Φ(M, ȳ1) = Φ(M, ȳ2) ⇔ Φ(M, ȳ1) ≤ Φ(M, ȳ2) ∧ Φ(M, ȳ1) ≥ Φ(M, ȳ2)

Φ(M, ȳ1) < Φ(M, ȳ2) ⇔ Φ(M, ȳ1) ≤ Φ(M, ȳ2) ∧ Φ(M, ȳ1) ̸= Φ(M, ȳ2)

Now we consider the case where the length of the tuple ȳ is 1, that is, y is a variable.
We say that Φ(x, y) is strictly increasing on a set I, if

∀y∀z[y, z ∈ I ∧ y < z → Φ(M, y) < Φ(M, z)].

If E(y, z) is an equivalence relation with convex classes on a set I, then Φ(M, y) is strictly
increasing on the quotient set I/E , if

∀y∀z[y, z ∈ I ∧ ¬E(y, z) ∧ y < z → Φ(M, y) < Φ(M, z)].
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We define strictly decreasing and constant behavior in a similar way to strictly increasing
behavior.

We assume that domΦ(M, y) = {y ∈ M : M |= (∃x)Φ(x, y)}.

Definition 1 (M. Dickmann; D. Macpherson, D. Marker, C. Steinhorn).

• A weakly o-minimal structure is a totally ordered structure M = (M,<, . . . ) such that
any definable subset of M is a finite union of convex disjoint sets under the ordering <.

• A theory is weakly o-minimal if all of its models are.

Definition 2 (D. Macpherson, D. Marker, C. Steinhorn,[7]). If M is a totally ordered struc-
ture, Φ(x, y) is an M -definable formula, I ⊂ dom(Φ(M, y)), then we say that Φ is tidy on I,
if one of the following holds:

1. ∀x ∈ I there is an infinite interval J ⊂ I such that x ∈ J and Φ is strictly increasing on
J (we say that Φ is locally increasing on I).

2. ∀x ∈ I there is an infinite interval J ⊂ I such that x ∈ J and Φ is strictly decreasing
on J (we say that Φ is locally decreasing on I).

3. ∀x ∈ I there is an infinite interval J ⊂ I such that x ∈ J and Φ is constant on J (we
say that Φ is locally constant on I).

and, if for some x ∈ I the set {y ∈ I | Φ(M, t) is strictly monotonic on (x, y) ∪ (y, x)} and
has a maximum or a minimum, then Φ(M, t) is strictly monotonic on I.

Definition 3. If Φ and I are like in Definition 2, then we say that Φ is n-tidy on I if the
following holds:

• ∀z∀y∀t [Φ(M, z) = Φ(M, y) ∧ z < t < y → Φ(M, z) = Φ(M, t)]

• Φ(n) is tidy on I/En−1, where Φ(n)(x, y) := ∃z[En−1(y, z) ∧ Φ(x, z)]

• (∀y ∈ I) En(I, y)/En−1 has no minimum and maximum.

• |I/En| ≥ ω.

Where En is an equivalence relation on I such that

En(z, y) ⇔ En−1(z, y) ∨
∨ [[z < y ∧ ¬En−1(z, y) → Φ(n) ↾ [z, y]/En−1 is strictly monotonic] ∧
∧ [y < z ∧ ¬En−1(z, y) → Φ(n) ↾ [y, z]/En−1 is strictly monotonic]]

Here 0-tidy is tidy, Φ(0) = Φ, E0(z, y) ⇔ z = y.
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Figure 1: The example of the graph of a function of depth 3

Definition 4. If Φ and I like in Definition 2, then we say that Φ is strongly tidy on I if there
exists n ∈ N such that Φ is (n − 1)-tidy on I and Φ(n) is strictly monotonic on I/En−1. So
we say that the depth of Φ on I equals n.

Definition 5 (D. Macpherson, D. Marker, C. Steinhorn, [7]). Let M be a weakly o-minimal
structure. We say that M has monotonicity if the following holds: whenever Φ(x, y, ā) is a
formula with ā ∈ M , there is m ∈ N and a partition of dom(Φ(M,y, ā)) into definable sets
X, I1, . . . , Im such that X is finite, each Ii is convex and on each Ii the formula Φ(x, y, ā) is
tidy.

Definition 6 (V. Verbovskiy, [10]). Let M be a weakly o-minimal structure. We say that
M has strong monotonicity (monotonicity [7]), if the following holds: whenever Φ(x, y, ā) is
a formula with ā ∈ M , there is m ∈ N and a partition of dom(Φ(M,y, ā)) into definable sets
X, I1, . . . , Im such that X is finite, each Ii is convex and on each Ii the formula Φ(x, y, ā) is
strongly tidy.

Definition 7. Let M be a weakly o-minimal structure. Then we say that M has finite depth,
if the following holds: whenever Φ(x, y, z̄) is a formula, there exists n ∈ N such that for any
ā ∈ M and for any convex set I ⊂ dom(Φ(M, y, ā)), on which Φ(M, y, ā) is strongly tidy, the
depth of Φ(M, y, ā) on I is less than n.
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Theorem 8 (D. Macpherson, D. Marker, C. Steinhorn, [7]). If all models of Th(M) are
weakly o-minimal, then M has monotonicity.

Theorem 9 (V. Verbovskiy, [10]). If all models of Th(M) are weakly o-minimal, then M has
strong monotonicity and finite depth.

Definition 10 (B. Baizhanov, V. Verbovskiy, [1], [11]).

1. An ordered structure M is o-stable in λ if for any A ⊆ M with |A| ≤ λ and for any cut
⟨C,D⟩ in M there are at most λ 1-types over A which are consistent with the cut ⟨C,D⟩,
i.e. ∣∣S1

⟨C,D⟩(A)
∣∣ ≤ λ.

2. A theory T is o-stable in λ if every model of T is. Sometimes, we write T is o-λ-stable.

3. A theory T is o-stable if there exists an infinite cardinal λ in which T is o-stable.

In [11], V. Verbovskiy proved that any ordered group whose elementary theory is o-stable
is Abelian.

Lemma 11 (V. Verbovskiy, [11]). Let G be an ordered group of non-valuational type whose
elementary theory is o-stable. Then any equivalence relation in G has at most finitely many
infinite convex classes.

Let Γ = {(x, f(x)) : x ∈ dom(f)} be the graph of a function f .
We denote by limx→a+0 f the set of all elements b ∈ G such that (a, b) is a limit point

of the set {(x, f(x)) : x ∈ dom(f), x > a}. In other words, limx→a+0 f is the set of all the
right-hand limit points of the function f at the point a.

Similarly, we define limx→a−0 f as the set of all such b that (a, b) is a limit point of the
set {(x, f(x)) : x ∈ dom(f), x < a}.

Furthermore, we define
lim
x→a

f ≜ lim
x→a−0

f ∪ lim
x→a+0

f.

Fact 12 (J. Goodrick, [4]). For any densely ordered structure A and any function f : A → A,
for any a ∈ A, the set limx→a f(x) is nonempty.

Lemma 13 (V. Verbovskiy, A. Dauletiyarova, [13]). Let an ordered group (G,<,+, f, 0, . . . ),
whose order is dense, have an o-stable theory. Then there exists a natural number k such that
for any element a ∈ dom f , the set limx→a f(x) has at most k elements.

Due to Lemma 13, we can define k functions f1, . . . , fk, where k is taken from Lemma 13,
as follows: fi(x) is the i-th element of limx→a f(x). So, we can define finitely many functions
which have at most one limit limx→a+0 f and at most one limit limx→a−0 f . So, without loss
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of generality, we may assume that a function under consideration has at most one left-hand
limit and at most one right-hand limit.

The definition of the convexity rank of a formula with one free variable was introduced
in [5] and extended on an arbitrary set in [6] by B. Kulpeshov:

Definition 14 (B. Kulpeshov, [5, 6]). Let T be a weakly o-minimal theory, M |= T , A ⊆ M .
The rank of convexity of the set A (RC(A)) is defined as follows:

1. RC(A) = −1 if A = ∅.
2. RC(A) = 0 if A is finite and non-empty.
3. RC(A) ≥ 1 if A is infinite.
4. RC(A) ≥ α + 1 if there exists a parametrically definable equivalence relation E(x, y)

and an infinite sequence of elements bi ∈ A, i ∈ ω, such that:

• For every i, j ∈ ω whenever i ̸= j we have M |= ¬E(bi, bj);

• For every i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset of A.

5. RC(A) ≥ δ if RC(A) ≥ α for all α < δ, where δ is a limit ordinal.
If RC(A) = α for some ordinal α, we say that RC(A) is defined. Otherwise (that is, if

RC(A)) ≥ α for all α), we put RC(A) = ∞.
The rank of convexity of a formula ϕ(x, ā), where ā ∈ M , is defined as the rank of

convexity of the set ϕ(M, ā), that is, RC(ϕ(x, ā)) ≜ RC(ϕ(M, ā)).
The convexity rank of a 1-type p is defined as the rank of convexity of the set p(M), that

is, RC(p) ≜ RC(p(M)).

Obviously, a theory that extends the theory of a linear order has the convexity rank 1 if
there are no parametrically definable equivalence relations with infinitely many infinite convex
classes.

3 Main result

Let A be a definable convex set. We define the following convex subgroups:

H+
A = {g ∈ G : a+ |g| ∈ A for any a ∈ A},

H−
A = {g ∈ G : a− |g| ∈ A for any a ∈ A}.

Following [8], we say that the right shore of A is long if H+
A is trivial; similarly, the left

shore of A is long if H−
A is trivial.

Lemma 15. Let G be an ordered o-stable group and E a definable equivalence relation with
convex classes. Then the number of infinite E-classes with a long shore is finite.
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Proof. Let E be a definable equivalence relation with infinitely many convex classes. Assume
to the contrary that there exist infinitely many infinite E-classes with a long shore. By
Dirichlet’s principle, without loss of generality, we may assume that there are infinitely many
infinite E-classes with the right long shore. Moreover, without loss of generality, we may
assume that there exists an infinite increasing sequence ⟨ai : i < ω⟩ of representatives of
infinite E-classes with a long right shore, such that ¬E(ai, aj) for each i < j < ω. Since
we can consider a sufficiently saturated model, we may suppose that there exists a positive
element b ∈ G such that E(ai, ai + b) holds for each i < ω.

Let φ(x; b) say that x belongs to an E-class whose length is at least b and whose right
shore is long and the distance between x and the right shore of [x]E is less than b. Since the
right shore is long, this set is not empty.

Let C = {g ∈ G : g < ai for some i} and D = G \ C. Since for each c ∈ C and each b1
and b2 with 0 < b1 < b2 < b it holds that

φ(G, b1) ∩ (c, supC) ⊂ φ(G, b2) ∩ (c, supC)

we obtain that G has the strict order property inside the cut supC. Since an expansion of
a model of an o-stable theory by a convex unary predicate preserves o-stability [11], we may
add a convex predicate P which names C. So, we obtain the strict order property inside the
cut

{c < x < d : c ∈ C, d ∈ D} ∪ {P (x)},

that contradicts o-stability, [1].

Theorem 16. Let G = (G,<,+, . . . ) be an ordered group with an o-stable theory. Let G have
finitely many, say k, non-trivial proper definable convex subgroups. Then RC(G) = k. And
vice versa, if RC(G) is finite, say k, then the number of non-trivial proper definable convex
subgroups is equal to k.

Proof. Let {0} < H1 < · · · < Hk < G be a chain of all definable convex subgroups of G. Then
Ek(x, y) ≜ x − y ∈ Hk is an equivalence relation with convex classes, and the chain E1, . . . ,
Ek of equivalence relations demonstrates that RC(G) is at least k.

Assume that RC(G) = k and a chain of equivalence relations E1, . . . , Ek witnesses it,
where Ei refines Ei+1 for each positive i < k. By Lemma 15, without loss of generality, after
removing finitely many equivalence classes, we may assume that each shore of each class of
each equivalence relation is short, that is, not long, so, it defines a non-trivial subgroup. By
the first paragraph of the proof of this theorem, the number of definable convex non-trivial
proper subgroups is at most k, say, n. Let

{0} < H1 < · · · < Hn < G

be the sequence of all definable convex non-trivial proper subgroups of G.
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First, we consider E1. Since H1 is the least non-trivial definable convex subgroup, and
each shore of each infinite E1-class defines a subgroup, each infinite E1-class consists of cosets
of H1.

Assume that there are infinitely many cosets of H2 such that each contains an E1-class as
a proper subset and this E1-class consists of infinitely many cosets of H1. Then we consider
G/H1 with the full induced structure. Its elementary theory is o-stable [11]. We obtain an
equivalence relation in G/H1 with infinitely many infinite convex classes, but these classes are
proper subsets of cosets of H2/H1. So, there exists a definable convex subgroup H ′/H1 <
H2/H1. Let H ′ be the pre-image of H ′/H1 in G. It is definable and convex. We obtain
a contradiction with the fact that there are exactly n definable convex non-trivial proper
subgroups. So, either an E1-class consists of finitely many cosets of H1 or consists of cosets
of H2. Note that if an E1-class consists of finitely many cosets of H1, then the order in G/H1

is discrete. Moreover, there is a positive integer m1 such that if a E1-class consists of finitely
many cosets of H1, then the number of these cosets is at most m1. Indeed, otherwise by
compactness there are infinite E1-classes and we obtain a contradiction as above.

Considering G/Hi we can conclude by the similar reasons that either an Ei+1-class consists
of finitely many cosets of Hi+1 or consists of cosets of Hi+2.

These imply that k ≤ n. So, we obtain the equality k = n.

Theorem 17. Let G be an order-stable ordered group of non-valuational type with a dense
order, let A be a sort in G, and let f : D ⊂ G → A be a definable and continuous function.
Then the function f is piecewise monotonic; that is, there exists some m ∈ N and a finite
partition of the domain of the function D = dom f into definable sets X, I1, . . . , Im such that
X is finite, each Ii is convex for i < m, and f ↾ Ii is monotonic.

Theorem 18. Let G be an ordered group with an o-stable theory and let f be a definable
continuous unary function. Let RC(G) = n. Let {0} < H1 < · · · < Hn < G be the chain of
all its definable convex subgroups and let G/Hi be dense for each i.

Then f is strongly tidy and its depth is at most n. In other words, an ordered group
with an o-stable theory and a finite convexity rank has strong monotonicity and finite depth
bounded by its convexity rank.

Proof. As we mentioned it below Lemma 13, we may assume that the graph f has at most
one limit point from the left and at most one limit point from the right for each element.
By Theorem 17 the restriction of f to any coset of H1 is piecewise monotone. Let E1 be
an equivalence relation on dom f with convex classes, on which f is monotone. Then, as we
know, the E1-classes are cosets of H1. Now we consider G/H1 with the complete induced
structure and we find that f/H1 is monotone on the cosets of H2/H1. Here,

f/H1(a) ≜ sup{f(x) : x ∈ a+H1}.

Kazakh Mathematical Journal, 25:2 (2025) 25–35



34 Viktor V. Verbovskiy

Proceeding by induction, we conclude that the statements of the theorem hold. The
bound for the depth of f follows from Theorem 16.
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Вербовский В.В. ШЕКТЕУЛI ДӨҢЕСТIК РАНГI БАР РЕТТЕЛГЕН-ТҰРАҚТЫ
ТОПТАҒЫ ФУНКЦИЯНЫҢ ТЕРЕҢДIГI ТУРАЛЫ

Бiз элементар теориялары o-тұрақты және шектеулi дөңестiктiк рангi бар реттел-
ген топтарда анықталатын унар функциялардың монотондық қасиеттерiн зерттеймiз.
o-тұрақтылық ұғымы o-минималдылық пен тұрақтылықты бiрiктiрiп, үзiлiстер маңын-
дағы типтердiң тәртiптiлiгiн қамтамасыз етедi. Бұған дейiнгi еңбектерде Пиллэй, Стайн-
хорн, Венцел және басқалардың маңызды үлесiмен әлсiз o-минимал құрылымдарда аны-
қталатын функциялардың кесiндiлiк немесе локальдi монотондығы көрсетiлген. Бiз бұл
нәтижелердi жалғастырып, локальдi монотондыққа, n-тәртiптiлiкке және анықталатын
функциялардың тереңдiгiне назар аударамыз. Атап айтқанда, мұндай функцияның кей-
бiр шектi натурал n үшiн кесiндiлiк n-тәртiптi болатынын көрсетемiз. Бұл монотондық
теориясын әлсiз o-минимал құрылымдардан кеңiрек o-тұрақты контекске дейiн жалға-
стырады.

Түйiн сөздер: реттелген минимал теория, NIP теориясы, кесiндiлiк монотондық,
локальдi монотондық, реттелген тұрақты теория, дөңестiк ранг.

Вербовский В.В. О ГЛУБИНЕ ФУНКЦИИ В O-СТАБИЛЬНОЙ УПОРЯДОЧЕН-
НОЙ ГРУППЕ С КОНЕЧНЫМ РАНГОМ ВЫПУКЛОСТИ

Мы исследуем свойства монотонности унарных функций, определимых в упорядо-
ченных группах, элементарные теории которых являются o-стабильными и имеют ко-
нечный ранг выпуклости. Понятие o-стабильности, объединяющее o-минимальность и
стабильность, обеспечивает упорядоченность типов в окрестности сечений. В предыду-
щих работах, в частности благодаря вкладу Пиллея, Стайнхорна, Венцеля и других,
была установлена кусочная или локальная монотонность определимых функций в слабо
o-минимальных структурах. Мы развиваем эти результаты, сосредотачиваясь на локаль-
ной монотонности, n-упорядоченности и глубине определимых функций. В частности,
мы показываем, что любая такая функция является кусочно n-упорядоченной для неко-
торого конечного n, расширяя теорию монотонности за пределы слабо o-минимальных
структур к более общему o-стабильному контексту.

Ключевые слова: о-минимальная теория, теория с NIP, кусочная монотонность,
локальная монотонность, упорядоченно-стабильная теория, ранг выпуклости.
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Abstract. This paper investigates an inverse initial problem for a time-fractional wave equation involv-
ing the Hadamard fractional derivative. Unlike the more widely studied Caputo and Riemann–Liouville
derivatives, the Hadamard derivative is defined via a logarithmic kernel and exhibits distinct analytical
features, making it suitable for modeling processes with slow memory decay and multiplicative structures.
Building on prior work concerning the extremum principle and solvability of boundary value problems
with Hadamard-type operators, we establish sufficient conditions for the unique solvability of the inverse
problem. The analysis is carried out in terms of eigenfunction expansions and leverages properties of the
two-parameter Mittag–Leffler function. The findings contribute to the theory of inverse problems for
fractional wave equations and highlight the role of Hadamard derivatives in capturing complex temporal
dynamics in mathematical models.

Keywords. Fractional wave equation, inverse initial problem, Hadamard fractional derivative, Mittag-
Leffler function.

1 Introduction

Inverse problems for fractional partial differential equations have gained considerable attention
in recent years due to their broad applicability to modeling complex phenomena in physics,
engineering, and other scientific fields. In particular, fractional-wave equations, which in-
corporate memory effects and nonlocal behavior, provide a more accurate representation of
various real-world processes than their classical counterparts [1].
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This paper addresses an inverse initial problem for a time-fractional wave equation where
the fractional derivative is understood in the sense of Hadamard. The Hadamard fractional
derivative, characterized by its logarithmic kernel, introduces unique analytical challenges and
properties distinct from those of the more commonly studied Riemann–Liouville and Caputo
derivatives. More properties of this derivative can be found in [2], [3].

In [4], an extremum principle for Hadamard fractional derivatives was considered. The
authors established new estimates for the Hadamard fractional derivatives at extreme points
of functions. This extremum principle was instrumental in proving the uniqueness and con-
tinuous dependence of solutions for initial boundary value problems related to linear and
nonlinear time-fractional diffusion equations.

Sequential differential equations with the Hadamard fractional derivative were the subject
of [5]. The Ulam–Hyers stability of Caputo-Hadamard fractional stochastic differential equa-
tions was studied in [6]. Variable-order Caputo-Hadamard fractional derivative was considered
in [7].

We note works [8] and [9], where sub-diffusion and fractional diffusion-wave equations
involving the Hadamard fractional derivative were analyzed. In [10], a problem with the
terminal integral condition for a nonlinear fractional-differential equation with the bi-ordinal
Hilfer-Hadamard derivative was targeted for the unique solvability.

We investigate the well-posedness of this problem under specific assumptions on the given
data. By carefully analyzing the structure of the equation and utilizing appropriate functional
analytic tools, we establish conditions that guarantee the existence and uniqueness of a solu-
tion. The results presented contribute to a broader understanding of inverse problems asso-
ciated with fractional wave equations and highlight the potential of the Hadamard derivative
in modeling and analysis.

2 Direct problem

Consider an initial boundary value problem for the time-fractional wave equation with the
Hadamard fractional derivative in a rectangular domain. Let us consider an equation

HD
α
1tu(t, x)− uxx(t, x) = f(t, x) (1)

in a rectangular domain Ω = {(t, x) : 0 < x < 1, 1 < t < T}. Here f(t, x) is a given function,
T > 1 is a positive real number, and

HD
α
1tg(t) =

(
t
d

dt

)n 1

Γ(n− α)

t∫
1

(
log

t

s

)n−α+1 g(s)

s
ds (t > 1)

represents the Hadamard fractional derivative of order α(1 < α ≤ 2, log(..) = ln(..) [1].
Let us formulate a direct problem for equation (1).
Direct problem. To find a function u(t, x) satisfying
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• the equation (1) in Ω;

• regularity conditions u(·, x) ∈ Cα
γ,log[1, T ], u(t, ·) ∈ C1[0, 1] ∩ C2(0, 1);

• boundary conditions
u(t, 0) = u(t, 1) = 0, 1 ≤ t ≤ T ; (2)

• initial conditions

HI
2−α
1t u(t, x)

∣∣
t=1+

= φ(x), 0 ≤ x ≤ 1, HD
α−1
1t u(t, x)

∣∣
t=1+

= ψ(x), 0 < x < 1. (3)

Here φ(x) and ψ(x) are given functions, HI
β
1t represents the Hadamard fractional integral of

order β > 0 given

HI
β
1tg(t) =

1

Γ(β)

t∫
1

(
log

t

s

)β−1 g(s)

s
ds, t > 1,

the class of functions Cα
δ,γ(..) with 0 < γ ≤ 1 is given by (see [1])

Cn
δ,γ [a, b] =

{
g : ∥g∥Cn

δ,γ
=

n−1∑
k=0

∥δkg∥C + ∥δng∥Cγ,log

}
,

C0
δ,γ [a, b] = Cγ,log[a, b], δ = t

d

dt
.

We search a solution to the direct problem as follows:

u(t, x) =

∞∑
k=1

Uk(t) sin kπx. (4)

Substituting (4) into (1) at f(t, x) ≡ 0 we obtain

HD
α
1tUk(t) + (kπ)2Uk(t) = fk(t), (5)

where fk(t) = 2
1∫
0

f(t, x) sin kπxdx are Fourier coefficients of the function f(t, x) represented

by Fourier-Sine series, i.e.

f(t, x) =
∞∑
k=1

fk(t) sin kπx.

Initial conditions (2) give us

HI
2−α
1t Uk(t)

∣∣
t=1+

= φk, 0 ≤ x ≤ 1, HD
α−1
1t Uk(t)

∣∣
t=1+

= ψk, 0 < x < 1. (6)
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Here, φk and ψk are Fourier coefficients of functions φ(x) and ψ(x), respectively.
The solution of the Cauchy-type problem (5)-(6) can be represented as [1]

Uk(t) = φk(t− 1)α−1Eα,α

[
−(kπ)2(log t)α

]
+ ψk(t− 1)α−2Eα,α−1

[
−(kπ)2(log t)α

]
+

+

t∫
1

(
log

t

s

)α−1

Eα,α

[
−(kπ)2

(
log

t

s

)α]
fk(s)

ds

s
, (7)

where Ea,b(z) =
∞∑
n=0

zn

Γ(an+b) , with a > 0 and b ∈ R, represents two-parameter Mittag-Leffler

function [1].
It is easy to prove the following statement.

Lemma 1. If g(x) ∈ C2[0, 1] is such that g (0) = g (1) = 0, g′′ (0) = g′′ (1) = 0, and
g′′′ (x) ∈ L2 (0, 1), then

∞∑
k=1

|gk| (kπ)2 ≤
∞∑
k=1

1

(kπ)2
+
∥∥g′′′ (x)∥∥2

2
.

The proof of this lemma can be done using integration by parts, considering Bessel’s
inequality and Parseval’s identity.

The convergence of the infinite series corresponding to the functions u(t, x) and uxx(t, x)
can be proved using Lemma 1 and the well-known estimate of the two-parameter Mittag-
Leffler function Ea,b(−z) ≤ C

1+|z| for z > 0 [1].
Regarding the solvability of the direct problem, we can state the following.

Theorem 2. If the functions φ(x), ψ(x), and f(t, x) (with respect to the variable x) satisfy
the condition of Lemma 1 and f(·, x) ∈ Cγ,log[1, T ], then a solution of the direct problem does
exist, moreover, it is unique and is represented by Formula (4), where Uk(t) will be found
using (7).

3 Inverse initial problem

In this section, we consider an inverse problem of finding an initial condition using the addi-
tional data at a fixed time.

Inverse initial problem. To find a pair of functions {u(t, x);ψ(x)} satisfying

• the equation (1) in Ω;

• regularity conditions u(·, x) ∈ Cα
γ,log[1, T ], u(t, ·) ∈ C1[0, 1] ∩ C2(0, 1), ψ(x) ∈ C[0, 1];

• boundary conditions (2);
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• the first initial condition of (3);

• over-determination condition u(ξ, x) = ζ(x), 0 ≤ x ≤ 1 for fixed ξ ∈ (1, T ].

Here, φ(x) and ζ(x) are given functions.
Inverse initial problems for differential equations were considered in many works. For

example, see [11]–[14]. Namely, in [11], authors investigated the unique solvability of the
inverse initial problem for the heat equation with the Bessel operator. Then in [12], the result
was generalized for the time-fractional heat equation with the same operator in the space
variable. In [13], a similar inverse problem was targeted at the sub-diffusion equation with a
variable coefficient involving a more general fractional derivative. The work [14] is devoted to
the unique solvability of the inverse initial problem for the fractional wave equation.

The following statement holds:

Theorem 3. Let 1 < α ≤ 4/3. Then if the functions φ(x), ζ(x), and f(t, x) (concerning
the variable x) satisfy the condition of Lemma 1 and f(·, x) ∈ Cγ,log[1, T ], then a solution of
the inverse initial problem does exist, moreover, it is unique and represented by the following
formula:

u(t, x) =
∞∑
k=1

[
φk(t− 1)α−1Eα,α[−(kπ)2(log t)α] + ψk(t− 1)α−2Eα,α−1

[
−(kπ)2(log t)α

]
+

+

t∫
1

(
log

t

s

)α−1

Eα,α

[
−(kπ)2

(
log

t

s

)α]
fk(s)

ds

s

]
sin kπx, (8)

ψ(x) =
∞∑
k=1

1

(ξ − 1)α−2Eα,α−1 [−(kπ)2(log ξ)α]

{
ζk − φk(ξ − 1)α−1Eα,α[−(kπ)2(log ξ)α]−

−
ξ∫

1

(
log

ξ

s

)α−1

Eα,α

[
−(kπ)2

(
log

ξ

s

)α]
fk(s)

ds

s

}
sin kπx; (9)

Proof. We assume that function ψ(x) is given and then use the solution of the direct problem,
given by

u(t, x) =

∞∑
k=1

sin kπx

{
φk(t− 1)α−1Eα,α

[
−(kπ)2(log t)α

]
+ ψk(t− 1)α−2 ×

× Eα,α−1

[
−(kπ)2(log t)α

]
+

t∫
1

(
log

t

s

)α−1

Eα,α

[
−(kπ)2

(
log

t

s

)α]
fk(s)

ds

s

}
. (10)
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Substituting (10) into the over-determination condition, one will get

ζ(x) =
∞∑
k=1

sin kπx

{
φk(ξ − 1)α−1Eα,α

[
−(kπ)2(log ξ)α

]
+ ψk(ξ − 1)α−2 ×

× Eα,α−1

[
−(kπ)2(log ξ)α

]
+

ξ∫
1

(
log

ξ

s

)α−1

Eα,α

[
−(kπ)2

(
log

ξ

s

)α]
fk(s)

ds

s

}
. (11)

In [15], it was shown that the Mittag-Leffler function Ea,b(z) does not have zeros for
1 < a ≤ 4/3, z, b ∈ R. You can also see [14]. Therefore, dividing the coefficient of the
function ψ(x) in (11), one can easily get (9).

The convergence of infinite series representing the solution can be proved using Lemma 1.
Namely, using (8) and considering the estimate |zEa,b(−z)| ≤ C for z > 0, we get

|u(t, x)| ≤
∞∑
k=1

C1|φk|+ C2|ψk|+ C3

t∫
1

|fk(s)|
ds

s

 .
Here Ci (i = 1, 3) are positive real numbers. Further, since they do not have principal impor-
tance, we denote them as C. Integration by parts and the well-known inequality 2ab ≤ a2+b2

yield

|u(t, x)| ≤ C

∞∑
k=1

1

(kπ)2

|φ(1)
k |2 + |ψ(1)

k |2 +
t∫

1

|f (1)k (s)|2ds
s

 ,
where φ

(1)
k =

1∫
0

φ′(x) cos kπxdx, ψ(1)
k =

1∫
0

ψ′(x) cos kπxdx, f (1)k (t) =
1∫
0

fx(t, x) cos kπxdx.

Using Parseval’s identity, one can easily get

|u(t, x)| ≤ C

 ∞∑
k=1

2

(kπ)2
+
∥∥φ′(x)

∥∥2
2
+
∥∥ψ′(x)

∥∥2
2
+

t∫
1

∥fx(s, ·)∥22
ds

s

 .

Here ∥ · ∥2 presents the L2(0, 1)-norm. Similarly, we will get

|ψ(x)| ≤ C

 ∞∑
k=1

1

(kπ)2
+

∥∥ζ ′(x)∥∥2
2
+
∥∥φ′(x)

∥∥2
2
+

ξ∫
1

∥fx(s, ·)∥22
ds

s

 .

Note that to get this, we have imposed the following conditions on the given functions:

φ(x), ζ(x), f(t, x) ∈ C[0, 1], φ(0) = φ(1) = 0, ζ(0) = ζ(1) = 0, f(t, 0) = f(t, 1) = 0,
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φ′(x), ζ ′(x), fx(t, ·) ∈ L2(0, 1).

To prove the uniform convergence of infinite series corresponding to uxx(t, x), we will impose
more conditions on the given functions as it was present in Lemma 1.

The uniqueness of the solution to the inverse initial problem follows from the completeness
of the system {sin kπx}∞k=1. Namely, assuming that the problem has two different set of
solutions {u1(t, x), ψ1(x)}, {u2(t, x), ψ2(x)}, and denoting

u(t, x) = u1(t, x)− u2(t, x), ψ(x) = ψ1(x)− ψ2(x),

we will get the corresponding homogeneous problem. Then we multiply both sides of (4) by
sinmπx, and integrate along [0, 1]:

1∫
0

u(t, x) sinmπxdx =

1∫
0

∞∑
k=1

Uk(t) sin(kπx) sin(mπx)dx.

Based on orthogonality of the system {sin kπx}∞k=1, one can easily get

Uk(t) = 2

1∫
0

u(t, x) sin kπxdx. (12)

The solution of the homogeneous case of Problem (5)–(6), from (7) easy to deduce that
Uk(t) ≡ 0. Hence, due to (12), considering that the system {sin kπx}∞k=1 is complete, we
obtain u(t, x) ≡ 0, which proves the uniqueness of the solution to the considered inverse
initial problem.

Theorem 3 has been proved.
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Алимов Зухридин, Кербал Себти, АДАМАР БӨЛШЕК ТУЫНДЫСЫ ҚАТЫСҚАН
БӨЛШЕК РЕТТI ТОЛҚЫН ТЕҢДЕУI ҮШIН КЕРI БАСТАПҚЫ ЕСЕП

Бұл мақалада уақыт айнымалысы бойынша Адамар бөлшек туындысы қатысқан
бөлшек реттi толқын теңдеуi үшiн керi бастапқы есеп қарастырылады. Көп зерттелетiн
Риман–Лиувилль мен Капуто туындыларынан айырмашылығы, Адамар туындысы ло-
гарифмдiк ядро арқылы анықталып, баяу жад әсерлерi мен мультипликативтi құры-
лымдарды сипаттауға мүмкiндiк бередi. Авторлар Адамар типтi операторлармен бай-
ланысты шекаралық есептердiң шешiлуi және экстремум принципi жөнiндегi алдыңғы
жұмыстарға сүйене отырып, керi есептiң жалғыз шешiмi үшiн жеткiлiктi шарттарды
дәлелдейдi. Зерттеу Фурье қатарлары мен екi параметрлi Миттаг–Леффлер функци-
ясының қасиеттерiне негiзделген. Алынған нәтижелер бөлшек толқындық теңдеулерге
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арналған керi есептер теориясын толықтырады және Адамар туындыларының күрделi
уақытша динамикаларды сипаттаудағы маңызын көрсетедi.

Түйiн сөздер: Бөлшек реттi толқын теңдеуi, керi бастапқы есеп, Адамар бөлшек
туындысы, Миттаг–Леффлер функциясы.

Алимов Зухридин, Кербал Себти, ОБРАТНАЯ НАЧАЛЬНАЯ ЗАДАЧА ДЛЯ ДРОБ-
НОГО ВОЛНОВОГО УРАВНЕНИЯ С ДРОБНОЙ ПРОИЗВОДНОЙ АДАМАРА

В данной статье рассматривается обратная начальная задача для дробного волно-
вого уравнения с дробной производной Адамара по времени. В отличие от более из-
вестных производных Римана–Лиувилля и Капуто, производная Адамара определяется
с помощью логарифмического ядра и обладает особыми аналитическими свойствами,
что делает её подходящей для моделирования процессов с медленным затуханием па-
мяти и мультипликативной структурой. Основываясь на ранее полученных результатах
по принципу экстремума и разрешимости краевых задач с производными Хадамара, ав-
торы устанавливают достаточные условия единственности решения. Метод основан на
разложении по собственным функциям и использовании свойств двухпараметрической
функции Миттага–Леффлера. Полученные результаты вносят вклад в развитие теории
обратных задач для дробных волновых уравнений и подчёркивают роль производных
Адамара в моделировании сложной временной динамики.

Ключевые слова: Дробное волновое уравнение, обратная начальная задача, дроб-
ная производная Адамара, функция Миттаг–Леффлера.

Kazakh Mathematical Journal, 25:2 (2025) 36–44



Kazakh Mathematical Journal ISSN 1682–0525

25:2 (2025) 45–62

On the orthogonality of a system of solenoidal
functions in a three-dimensional cube

Muvasharkhan T. Jenaliyev1, Madi G. Yergaliyev2

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
1muvasharkhan@gmail.com, 2ergaliev@math.kz

Communicated by: Anar T. Assanova

Received: 26.05.2025 ⋆ Accepted/Published Online: 02.06.2025 ⋆ Final Version: 26.05.2025

Abstract. Previously, we constructed a system of orthonormal functions (SOF) as a solution to a
spectral problem for a fourth-order operator in a three-dimensional cube. Using a three-dimensional curl
operator applied to SOF, we derived a system of solenoidal functions (SSF), which are crucial in the
study of incompressible fluid dynamics and the theory of Navier-Stokes equations. However, the SSF
obtained in this way did not possess the orthogonality property, which is often desirable in theoretical
analysis and numerical applications. The main result of this work is the construction of a new system of
solenoidal functions, based on the original SOF, which is shown to be almost orthogonal. This property
makes the system suitable for use in spectral methods and other analytical approaches where near-
orthogonality ensures better convergence and stability. The methodology developed in this study can
be generalized to other types of boundary value problems involving higher-order differential operators
and may contribute to the development of more efficient computational schemes in fluid mechanics.

Keywords. Spectral problem, fourth-order differential operator, system of solenoidal functions, orthog-
onality property

1 Introduction

In a number of works by Academician O.A. Ladyzhenskaya, the importance of constructing “a
certain fundamental system” [1, p. 94] in the space of solenoidal functions (in particular, for
the simplest domains such as a cube, a sphere, etc.) was pointed out. The existence of such
a system is well known and requires no proof. This fact is actively employed by researchers
in proving existence theorems for two- and three-dimensional Navier–Stokes systems, in both
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linear and nonlinear cases, as well as in further analysis of the qualitative properties of the
solutions thus obtained. However, for the numerical solution of boundary value problems that
arise in the Stokes as well as Navier-Stokes systems, it is necessary to construct the aforemen-
tioned fundamental system explicitly. R.S. Saks wrote in [2, p. 724], [3, p. 56]: “In particular,
O.A. Ladyzhenskaya was interested in the possibility of calculating the eigenfunctions of the
Stokes operator in domains of the simplest types (cube, sphere, etc.)”.

The paper is organized as follows. In Section 2, we present the basic definitions, several
auxiliary statements, the key ideas, and the preliminary results of the work. In Section 3, we
formulate the main result of the paper, Theorem 11, and provide its proof. In the end, a brief
conclusion is provided.

2 Definitions, Problem Statement and Preliminary results

2.1. On the concept of a “fundamental system”. Let d ≥ 2, Ω1 ⊂ Rd be an open bounded
domain with Lipschitz boundary ∂Ω1. Ladyzhenskaya O.A. writes [1, 105]: ‘We do not
require the property of linear independence from the so-called “fundamental system” {φ⃗k}∞k=1

(for example, in space (
◦
W 1

2(Ω1))
d , d ≥ 2). Instead, we require only the following: for any

ε > 0 and any function φ⃗∈ (
◦
W1

2(Ω1))
d there exists a sum φ⃗ ε =

Nε∑
k=1

akφ⃗k, Nε < ∞, such that

the inequality ∥∇(φ⃗− φ⃗ ε)∥L2(Ω1) ≤ ε, holds.’
In this paper, we adhere to the above definition of a fundamental system of functions.

Moreover, throughout the paper, we denote by Ω1 ⊂ Rd, d ≥ 2 a domain with a Lipschitz
boundary ∂Ω1, and by Ω = (0, l)d ⊂ Rd a square for d = 2 or a cube for d = 3.

We introduce the fundamental function spaces relevant to the analysis of the Navier-
Stokes equations [4, 5, 6]

H(Ω1) = {w⃗| w⃗ ∈ L2(Ω1), div w⃗ = 0, w⃗ · n⃗|∂Ω1 = 0}, (1)

L2(Ω1) ≡ (L2(Ω1))
d ≡ H(Ω1)⊕H⊥(Ω1),

where w⃗ · n⃗ is the normal component of the vector w⃗,

H⊥(Ω1) = {w⃗| w⃗ ∈ L2(Ω1), w⃗ = grad q, q ∈ W 1
2(Ω1)},

V(Ω1) = {w⃗| w⃗ ∈
◦
W

1
2(Ω1), div w⃗ = 0},

◦
W

1
2(Ω1) ≡ (

◦
W

1
2(Ω1))

d. (2)

Let Ω = (0, l)d denote a “d-dimensional cube”. We now introduce the Hilbert spaces that
will be used throughout this work.

Definition 1. Denote by V1(Ω) and V2(Ω) the Hilbert spaces equipped with the following
inner products, respectively:

(∇u,∇v)L2(Ω) ∀u, v ∈
◦
W

1
2(Ω), (3)
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((u, v)) =

d∑
k=1

(
∂2
xk
u, ∂2

xk
v
)
L2(Ω)

∀u, v ∈
◦
W

2
2(Ω). (4)

Definition 2. Let V1k(0, l) and V2k(0, l), k = 1, ..., d, be Hilbert spaces equipped with the
corresponding inner products

(α′(xk), β
′(xk))L2(0,l) ∀α(xk), β(xk) ∈

◦
W

1
2(0, l), (5)

((α(xk), β(xk))) =
(
α′′(xk), β

′′(xk)
)
L2(0,l)

∀α(xk), β(xk) ∈
◦
W

2
2(0, l). (6)

We define the spaces V1(Ω) (3) and V2(Ω) (4) as the following direct products of the
spaces V1k(0, l) (5) and V2k(0, l) (6):

V1(Ω) =
d⊗

k=1

V1k(0, l), (7)

V2(Ω) =

d⊗
k=1

V2k(0, l). (8)

Problem A. It is necessary to construct a system of functions belonging to the space
V(Ω) (2) that is fundamental (in the sense of O.A. Ladyzhenskaya) in the space H(Ω) (1).

2.4. Let Ω = (0, l)3 be a three-dimensional cube. Previously, we studied the following
spectral problem:

(∂4
x1

+ ∂4
x2

+ ∂4
x3
)U(x) = λ2(−∆)U(x), x ∈ Ω, (9)

U(x) = 0, ∂n⃗U(x) = 0, x ∈ ∂Ω. (10)

Note that the left-hand side of equation (9) defines a positive definite (elliptic) operator
in the space

◦
W2

2(Ω). Therefore, the following statement holds.

Theorem 3. The set of generalized eigenfunctions {un(x), n ∈ N} of the spectral problem
(9)–(10) belongs to the space V2(Ω) (8) and forms an orthogonal basis in the space V1(Ω)
(7). Moreover, all eigenvalues {λ2

n}n∈N lie on the positive real semi-axis, and the smallest
eigenvalue λ2

1 is strictly positive.

Remark 4. Note that when the biharmonic operator appears on the left-hand side of the
equation (9), the problem (9)–(10) admits an explicit solution only in the case of a circle
[7, 8]. A more detailed discussion of this problem can be found in works [10, 11, 12].
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Theorem 5. The spectral problem (9)–(10) has the following solution

un(x) =
3∏

k=1

Xk,n(xk), λ2
n, n ∈ N, (11)

where Xk,n(xk) = Φn(y)|y=xk
, k = 1, 2, 3:

Φ2n−1(y) = sin2
λ2n−1y

2
, λ2

2n−1 =

(
2(2n− 1)π

l

)2

, n ∈ N, (12)

Φ2n(y) = [λ2nl − sinλ2nl] sin
2 λ2ny

2
− sin2

λ2nl

2
[λ2ny − sinλ2ny] , λ2

2n =

(
2νn
l

)2

, n ∈ N,

(13)

and {νn, n ∈ N} are the positive roots of the equation tan ν = ν.

From Theorems 3 and 5, we deduce the following:

Theorem 6. The system of eigenfunctions {un(x), n ∈ N} (11)–(13) belongs to the space
V2(Ω) (8) and forms an orthogonal basis in the space V1(Ω) (7).

The system of eigenfunctions {un(x), n ∈ N} from (11)–(13) can be normalized to obtain
an orthonormal basis. Thus, the following statement is true.

Corollary 7. After normalization, the system of eigenfunctions {ūn(x1, x2, x3), n ∈ N} of
the spectral problem (9)–(10) can be represented as

ū2n−1(x1, x2, x3) =
8
√
2

3
√
3(2n− 1)π

√
l

3∏
k=1

sin2
λ2n−1xk

2
, n ∈ N, (14)

ū2n(x1, x2, x3) =

√
6(1 + ν2n)

2

5
√
l ν7n

3∏
k=1

[
1

νn
sin

2νnxk
l

− 2

l
xk + 2 sin2

νnxk
l

]
, n ∈ N, (15)

where {νn, n ∈ N} are the positive roots of the equation tan ν = ν.
Moreover, the system of eigenfunctions (14)–(15) belongs to the space V2(Ω) (8) and forms

an orthonormal basis in the space V1(Ω) (7).

As is known, the curl operator is determined by the formula

curl{U1(x), U2(x), U3(x)} = {∂x2U3 − ∂x3U2, ∂x3U1 − ∂x1U3, ∂x1U2 − ∂x2U1}. (16)

The following statement holds.
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Proposition 8. If U1 = U2 = U3 = U(x) ∈
◦
W2

2(Ω), then we obtain

curl{U(x), U(x), U(x)} ⊂ V(Ω),

that is, there does not exist a scalar function U(x) ∈
◦
W2

2(Ω) for every vector function w⃗(x) ∈
V(Ω) (2) such that the following relations hold:

w⃗ = curl{U(x), U(x), U(x)}.

Next, using the system of functions (14)–(15), we introduce an extended system of func-
tions

{
u1m(x, y, z)

}∞
m=0

, where

u10(x) ≡ 0, u1m(x) = ūm(x), m ∈ N, (17)

and construct vector functions{
u⃗1mjk(x) =

(
u1m(x), u1j (x), u

1
k(x)

)
, m, j, k ∈ N0 = N ∪ {0}

}
⊂ V2(Ω), (18)

which will form an orthogonal basis in the space V1(Ω) ≡ (V1(Ω))
3 (7).

From Theorems 3–6, it follows that

Theorem 9. Let d = 3, Ω = (0, l)3. Then the system of eigenfunctions {u⃗1mjk(x), m, j, k ∈
N0} (17)–(18) belongs to the space (V2(Ω))

3 (8) and forms an orthonormal basis in the space
V1(Ω) ≡ (V1(Ω))

3 (7).

Theorem 10. Let d = 3, Ω = (0, l)3. Then, by applying the operator curl (16) to the extended
system of vector functions (17)–(18), we obtain the desired fundamental system (in the sense
of O.A. Ladyzhenskaya):

{w⃗mjk(x) = (w1,jk(x), w2,km(x), w3,mj(x)) , m, j, k ∈ N0} ⊂ V(Ω), (19)

in space of solenoidal functions H(Ω) (1), where

w1,jk(x) =
(
∂x2 ū

1
k − ∂x3 ū

1
j

)
(x), x ∈ Ω, j, k ∈ N0, (20)

w2,km(x) =
(
∂x3 ū

1
m − ∂x1 ū

1
k

)
(x), x ∈ Ω, m, k ∈ N0, (21)

w3,mj(x) =
(
∂x1 ū

1
j − ∂x2 ū

1
m

)
(x), x ∈ Ω, m, j ∈ N0, (22)

div w⃗mjk(x) = 0, x ∈ Ω, m, j, k ∈ N0,

w⃗mjk(x) = 0, x ∈ ∂Ω, m, j, k ∈ N0.
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Thus, Theorem 10 provides a solution to Problem A for a cubic domain of independent
variables. However, the system of functions (20)–(22) does not have the property of orthogo-
nality.

We rewrite the orthogonal basis (17)–(18) (by Theorem 3) as three groups of orthogonal
elements in the direct product of spaces (V1(Ω))

3 ≡ V1(Ω)⊗ V1(Ω)⊗ V1(Ω):

{A⃗1n ≡ (ū1n, 0, 0), A⃗2n ≡ (0, ū1n, 0), A⃗3n ≡ (0, 0, ū1n), n ∈ N0} ⊂ (V2(Ω))
3. (23)

Let U⃗(x) = (U1(x), U2(x), U3(x)) be an arbitrary vector function from (V2(Ω))
3. It is

obvious that the vector function U⃗(x) can be represented as the sum of three vector functions:

U⃗(x) = (U1(x), 0, 0) + (0, U2(x), 0) + (0, 0, U3(x)) ∈ (V2(Ω))
3, (24)

In Section 3 we will construct a nearly orthogonal system of solenoidal functions.

3 Main result

From (23)–(24), the Theorems 9 and 10 we obtain a system of vector functions

A⃗(x) =
{
A⃗1n(x), A⃗2n(x), A⃗3n(x), n ∈ N

}
, A⃗kn(x) =

(
A1

kn(x), A
2
kn(x), A

3
kn(x)

)
. (25)

We formulate the main results of the paper.

Theorem 11 (Main result). Let d = 3, Ω = (0, l)3. Then, using (17)–(18), (23)–(24) and
(25), as well as the curl operator (16), we obtain the following six groups (26)–(32) of vector
functions

{w⃗kn(x) ≡ (w1,kn(x), w2,kn(x), w3,kn(x)) , k = 1, 2, 3, n ∈ N} : (26)
w1,1,2n−1(x) = ∂x2A

3
1,2n−1(x)− ∂x3A

2
1,2n−1(x) = 0,

w2,1,2n−1(x) = ∂x3A
1
1,2n−1(x)− ∂x1A

3
1,2n−1(x) = ∂x3 ū

1
2n−1(x),

w3,1,2n−1(x) = ∂x1A
2
1,2n−1(x)− ∂x2A

1
1,2n−1(x) = −∂x3 ū

1
2n−1(x),

k = 1, n ∈ N, (27)


w1,2,2n−1(x) = ∂x2A

3
2,2n−1(x)− ∂x3A

2
2,2n−1(x) = −∂x3 ū

1
2n−1(x),

w2,2,2n−1(x) = ∂x3A
1
2,2n−1(x)− ∂x1A

2
2,2n−1(x) = 0,

w3,2,2n−1(x) = ∂x1A
2
2,2n−1(x)− ∂x2A

1
2,2n−1(x) = ∂x1 ū

1
2n−1(x),

k = 2, n ∈ N, (28)


w1,3,2n−1(x) = ∂x2A

3
3,2n−1(x)− ∂x3A

2
3,2n−1(x) = ∂x2 ū

1
2n−1(x),

w2,3,2n−1(x) = ∂x3A
1
3,2n−1(x)− ∂x1A

3
3,2n−1(x) = −∂x2 ū

1
2n−1(x),

w3,3,2n−1(x) = ∂x1A
2
3,2n−1(x)− ∂x2A

1
3,2n−1(x) = 0,

k = 3, n ∈ N, (29)

Kazakh Mathematical Journal, 25:2 (2025) 45–62



On the orthogonality. . . 51


w1,1,2n(x) = ∂x2A

3
1,2n(x)− ∂x3A

2
1,2n(x) = 0,

w2,1,2n(x) = ∂x3A
1
1,2n(x)− ∂x1A

3
1,2n(x) = ∂x3 ū

1
2n(x),

w3,1,2n(x) = ∂x1A
2
1,2n(x)− ∂x2A

1
1,2n(x) = −∂x3 ū

1
2n(x),

k = 1, n ∈ N, (30)


w1,2,2n(x) = ∂x2A

3
2,2n(x)− ∂x3A

2
2,2n(x) = −∂x3 ū

1
2n(x),

w2,2,2n(x) = ∂x3A
1
2,2n(x)− ∂x1A

2
2,2n(x) = 0,

w3,2,2n(x) = ∂x1A
2
2,2n(x)− ∂x2A

1
2,2n(x) = ∂x1 ū

1
2n(x),

k = 2, n ∈ N, (31)


w1,3,2n(x) = ∂x2A

3
3,2n(x)− ∂x3A

2
3,2n(x) = ∂x2 ū

1
2n(x),

w2,3,2n(x) = ∂x3A
1
3,2n(x)− ∂x1A

3
3,2n(x) = −∂x2 ū

1
2n(x),

w3,3,2n(x) = ∂x1A
2
3,2n(x)− ∂x2A

1
3,2n(x) = 0,

k = 3, n ∈ N, (32)

for which the following statements are true:
10. The set of vector functions (27)–(29) are orthogonal to each other.
20. The set of vector functions (30)–(32) are orthogonal to each other.
30. The set of elements from the sets of vector functions (27) and (30) is orthogonal. So

are the sets (28) and (31), as well as (29) and (32).
40. However, the set of elements from the sets of vector functions (27) and (31), (27) and

(32), (28) and (30), (28) and (32), (29) and (30), (29) and (31) do not have the property of
orthogonality.

Here we understand orthogonality in the sense of the space H(Ω) (1).

Proof of Theorem 11. Let us prove the validity of point 10. Let k = 1. Consider the
scalar product in space L2(Ω) of vector functions of set (27). Let n ̸= m. We have

(w⃗1,2n−1(x), w⃗1,2m−1(x)) =

∫
Ω

[
∂x3 ū

1
2n−1(x)∂x3 ū

1
2m−1(x) + ∂x2 ū

1
2n−1(x)∂x2 ū

1
2m−1(x)

]
dx = 0.

(33)
Indeed, according to relations (11)–(13) from Theorem 5, the equality to zero of the first

and second integrals from (33) is equivalent to the following relations

l∫
0

X ′
3,2n−1(x3)X

′
3,2m−1(x3) dx3 = 0,

l∫
0

X ′
2,2n−1(x2)X

′
2,2m−1(x2) dx2 = 0. (34)

The validity of equalities (34) is verified by direct calculation.
We have

X ′
j,2n−1(xj) =

λ2n−1

2
X̃ ′

j,2n−1(xj), (35)
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where
X̃ ′

j,2n−1(xj) = sinλ2n−1xj , (36)

X ′
j,2n(xj) =

2

l
(νn)

3 cos2 νn X̃
′
j,2n(xj), (37)

X̃ ′
j,2n(xj) = νn · sin 2νn

l
xj − 2 sin2

νnxj
l

. (38)

Note that without paying attention to the coefficients of the functions (35) and (37), it
is sufficient for us to study the orthogonality of the system of functions (36) and (38).

Lemma 12. The equality

l∫
0

X̃ ′
j,2n−1(xj)X̃

′
j,2m−1(xj)dxj = 0, j = 1, 2, 3, m ̸= n, m, n ∈ N,

is true.

Proof of Lemma 12. Indeed, we have

l∫
0

X̃ ′
j,2n−1(xj)X̃

′
j,2m−1(xj) dxj =

l∫
0

sinλ2n−1xj · sinλ2m−1xj dxj =

=
1

2

[
1

λ2n−1 − λ2m−1
sin (λ2n−1 − λ2m−1)xj−

− 1

λ2n−1 + λ2m−1
sin (λ2n−1 + λ2m−1)xj

] ∣∣∣xj=l

xj=0
= 0.

The validity of Lemma 12 is established.

From here we obtain the required orthogonality condition for 10 at k = 1, 2, 3.
Next, it remains for us to show the orthogonality of the vector functions w⃗k,2n−1(x) and

w⃗j,2m−1(x) for k ̸= j, k, j = 1, 2, 3. For k = 1, j = 2 we have

(w⃗1,2n−1(x), w⃗2,2m−1(x)) = −
∫
Ω

∂x2 ū
1
2n−1(x)∂x1 ū

1
2m−1(x) dx = 0 ∀n,m ∈ N. (39)

Indeed, according to relations (11)–(13) from Theorem 5, the equality to zero of the integral
from (39) will be satisfied if following equalities hold

l∫
0

X2,2m−1(x2)X
′
2,2n−1(x2) dx2 = 0 and

l∫
0

X1,2n−1(x1)X
′
1,2m−1(x1) dx1 = 0. (40)
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The validity of equalities (40) is verified by direct calculation. This is true for other k ̸=
j, k, j = 1, 2, 3. Let us just note that it is necessary to consider two cases: m = n and
m ̸= n.

Lemma 13. The equality

l∫
0

Xj,2m−1(xj)X
′
j,2n−1(xj) dxj = 0, j = 1, 2, 3, m ̸= n, n ∈ N,

is true.

Proof of Lemma 13. We have

l∫
0

Xj,2m−1(xj)X
′
j,2n−1(xj) dxj =

λ2n−1

2

l∫
0

sin2
λ2m−1xj

2
sinλ2n−1xj dxj = 0.

Remark 14. Let m = n. The equality

l∫
0

Xj,2n−1(xj)X
′
j,2n−1(xj) dxj =

1

2
[Xj,2n−1(xj)]

2
∣∣∣l
0
= 0, j = 1, 2, 3, n ∈ N,

is true.

Let us prove the validity of point 20. Let k = 1. Consider the scalar product in space
L2(Ω) of vector functions of set (30). Let n ̸= m. We have

(w⃗1,2n(x), w⃗1,2m(x)) =

∫
Ω

[
∂x3 ū

1
2n(x)∂x3 ū

1
2m(x) + ∂x2 ū

1
2n(x)∂x2 ū

1
2m(x)

]
dx = 0. (41)

Indeed, according to relations (11)–(13) from Theorem 5, the equality to zero of the
integral from (41) will be satisfied if following equalities hold

l∫
0

X ′
3,2n(x3)X

′
3,2m(x3) dx3 = 0 and

l∫
0

X ′
2,2n(x2)X

′
2,2m(x2) dx2 = 0. (42)

The validity of equalities (42) is verified by direct calculation.
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Lemma 15. The equality

l∫
0

X̃ ′
j,2n(xj)X̃

′
j,2m(xj) dxj = 0, j = 1, 2, 3, m ̸= n, m, n ∈ N, (43)

is true.

Proof of Lemma 15. First of all, we write the left part of the relation (43) as:

l∫
0

[
νn sin

2νn
l

xj − 2 sin2
νnxj
l

]
·
[
νm sin

2νm
l

xj − 2 sin2
νm
l
xj

]
dxj =

4∑
k=1

Ik. (44)

Next, we sequentially calculate the integrals from (44) Ik, k = 1, ..., 4. We have

I1 =

l∫
0

[
νn sin

2νn
l

xj · νm sin
2νm
l

xj

]
dxj =

lν2nν
2
m

1 + ν2n + ν2m + ν2nν
2
m

.

Here and in what follows we take into account the equation where νn are the positive roots
of the equation

tan νn = νn.

We calculate the integral I2. We have

I2 = −2

l∫
0

[
νn sin

2νn
l

xj · sin2
νm
l
xj

]
dxj = − lν2nν

2
m

1 + ν2n + ν2m + ν2nν
2
m

.

Similarly to I2, the expression for I3 is calculated:

I3 = − lν2nν
2
m

1 + ν2n + ν2m + ν2nν
2
m

.

It remains to calculate the integral I4, for which we obtain

I4 =

l∫
0

(
1− cos

2νn
l

xj

)(
1− cos

2νm
l

xj

)
dxj =

lν2nν
2
m

1 + ν2n + ν2m + ν2nν
2
m

.

So, finally, taking into account (44)–(3) we have

4∑
k=1

Ik =
lν2nν

2
m

1 + ν2n + ν2m + ν2nν
2
m

− lν2nν
2
m

1 + ν2n + ν2m + ν2nν
2
m

−
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− lν2nν
2
m

1 + ν2n + ν2m + ν2nν
2
m

+
lν2nν

2
m

1 + ν2n + ν2m + ν2nν
2
m

= 0.

We have established the validity of the orthogonality condition (43) of Lemma 15.

From here we obtain the required orthogonality condition for 20 at k = 1, 2, 3.
Next, it remains for us to show the orthogonality of the vector functions w⃗k,2n(x) and

w⃗j,2m(x) for k ̸= j, k, j = 1, 2, 3. For k = 1, j = 2 we have

(w⃗1,2n(x), w⃗2,2m(x)) = −
∫
Ω

∂x2 ū
1
2n(x)∂x1 ū

1
2m(x) dx = 0 ∀n,m ∈ N. (45)

Indeed, according to relations (11)–(13) from Theorem 5, the equality to zero of the integral
from (45) will be satisfied if following equalities hold

l∫
0

X2,2m(x2)X
′
2,2n(x2) dx2 = 0 and

l∫
0

X1,2n(x1)X
′
1,2m(x1) dx1 = 0, (46)

where

X2,2m(x2) = C(m)X̃2,2m(x2), X̃2,2m(x2) =
1

νm
sin

2νmx2
l

− 2

l
x2 + 2 sin2

νmx2
l

,

X2,2n(x2) = C(n)X̃2,2n(x2), X̃ ′
2,2n(x2) = νn sin

2νnx2
l

− 2 sin2
νnx2
l

,

C(m), C(n) are constants.
The validity of equalities (46) is verified by direct calculation. Let us just note that it is

necessary to consider two cases: m = n and m ̸= n. Let m ̸= n. We obtain

Lemma 16. The equality

Im,n =

l∫
0

X̃2,2m(x2)X̃
′
2,2n(x2) dx2 =

6∑
s=1

Im,n,s = 0, m ̸= n, m, n ∈ N, (47)

is true.

Proof of Lemma 16. Let us calculate the integrals Im,n,s, s = 1, ..., 6. We have

Im,n,1 =
νn
νm

l∫
0

sin
2νmx2

l
sin

2νnx2
l

dx2

= − lνn
4νm

[
sin 2(νm + νn)

νm + νn
− sin 2(νm − νn)

νm − νn

]
= l

ν2n
(1 + ν2m)(1 + ν2n)

, (48)
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Im,n,2 = − 2

νm

l∫
0

sin
2νmx2

l
sin2

νnx2
l

dx2

= − 1

νm

l∫
0

sin
2νmx2

l

[
1− cos

2νmx2
l

]
dx2 = −l

ν2n
(1 + ν2m)(1 + ν2n)

, (49)

Im,n,3 = −2νn
l

l∫
0

x2 sin
2νnx2

l
dx2 = −l

ν2n
1 + ν2n

, (50)

Im,n,4 =
4

l

l∫
0

x2 sin
2 νnx2

l
dx2 = l

ν2n
1 + ν2n

, (51)

Im,n,5 = 2νn

l∫
0

sin
2νnx2

l
sin2

νnx2
l

dx2

= l

[
ν2n

1 + ν2n
− νn(νn + νm)

2(1 + ν2m)(1 + ν2n)
− νn(νn − νm)

2(1 + ν2m)(1 + ν2n)

]
= l

ν2nν
2
m

(1 + ν2m)(1 + ν2n)
, (52)

Im,n,6 = −4

l∫
0

sin2
νmx2
l

sin2
νnx2
l

dx2

= l

[
−1 +

1

1 + ν2m
+

1

1 + ν2n
− 1

(1 + ν2m)(1 + ν2n)

]
= −l

ν2nν
2
m

(1 + ν2m)(1 + ν2n)
. (53)

According to (48)–(53) we obtain relation (47).

The equalities (45) or (47) is true for other k ̸= j, k, j = 1, 2, 3.

Remark 17. Let m = n. The equality

Im,m =

l∫
0

X̃2,2n(x2)X̃
′
2,2n(x2) dx2 =

1

2

[
X̃2,2n(x2)

]2 ∣∣∣l
0
= 0, n ∈ N,

is true.
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Let us prove the validity of point 30. Consider the scalar product in space L2(Ω) of vector
functions of sets (27) and (30). We have

Lemma 18. For any m, n ∈ N the equality

l∫
0

X̃ ′
j,2n−1(xj)X̃

′
j,2m(xj) dxj = 0, j = 1, 2, 3, (54)

holds.

Proof of Lemma 18. Indeed, first of all, from (54) we obtain

l∫
0

sinλ2n−1xj

[
νm sin

2νm
l

xj − 2 sin2
νm
l
xj

]
dxj =

2∑
k=1

(−1)k−1Jk.

We calculate the integral J1. We have

J1 =
νm
2

l∫
0

[
cos

(
λ2n−1 −

2νm
l

)
xj − cos

(
λ2n−1 +

2νm
l

)
xj

]
dxj =

=
l2λ2n−1ν

2
m

2(1 + ν2m)

[
ν2m −

(
λ2n−1l

2

)2
] . (55)

We calculate the integral J2. We have

J2 =

l∫
0

sinλ2n−1xj

[
1− cos

2νm
l

xj

]
dxj = − l2λ2n−1ν

2
m

2(1 + ν2m)

[(
λ2n−1l

2

)2
− ν2m

] . (56)

So, finally, taking into account (55)–(56) we have

2∑
k=1

(−1)k−1Jk =
l2λ2n−1ν

2
m

2(1 + ν2m)

[
ν2m −

(
λ2n−1l

2

)2
] − l2λ2n−1ν

2
m

2(1 + ν2m)

[
ν2m −

(
λ2n−1l

2

)2
] = 0.

The statement of Lemma 18 is proved.

Similarly, as in case (27) and (30), one can show the orthogonality of the systems of vector
functions (28) and (31), (29) and (32). This completes the proof of point 30 of Theorem 11.

Let us move on to the proof of point 40 Theorem 11.
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Lemma 19. Vector functions w⃗k,2n−1(x) and w⃗j,2m(x) for k ̸= j, k, j = 1, 2, 3 are non-
orthogonal.

Proof of Lemma 19. For k = 1, j = 2 we show that the following inequality holds

(w⃗1,2n−1(x), w⃗2,2m(x)) = −
(
∂x2 ū

1
2n−1(x), ∂x1 ū

1
2m(x)

)
= C(n,m)

3∏
k=1

Tk

= C(n,m)

l∫
0

X̃1,2n−1(x1)X̃
′
1,2m(x1) dx1

l∫
0

X̃ ′
2,2n−1(x2)X̃2,2m(x2) dx2

×
l∫

0

X̃3,2n−1(x3)X̃3,2m(x3) dx3 ̸= 0, C(m,n) = constant. (57)

To do this, it is sufficient to calculate the first and third factors represented by the integrals
in (57). We have

2T1 = 2

l∫
0

X̃1,2n−1(x1)X̃
′
1,2m(x1) dx1 = 2

l∫
0

sin2
λ2n−1x1

2

[
νm sin

2νmx1
l

− 2 sin2
νmx1
l

]
dx1

=

l∫
0

[1− cosλ2n−1x1]

[
νm sin

2νmx1
l

− 2 sin2
νmx1
l

]
dx1 =

6∑
s=1

Is. (58)

2T1 =
6∑

s=1

Is = νm

l∫
0

sin
2νmx1

l
dx1 = l

1

1 + ν2m
. (59)

I2 = −
1∫

0

dx1 = −l. (60)

I3 =

l∫
0

cos
2νmx1

l
dx1 = l

1

1 + ν2m
. (61)

I4 = −νm

l∫
0

sin
2νmx1

l
cosλ2n−1x1 dx1 = −l

4ν4m
(1 + ν2m) [(2νm)2 − (λ2n−1l)2]

. (62)
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I5 =

l∫
0

cosλ2n−1x1 dx1 = 0. (63)

I6 = −νm

l∫
0

cos
2νmx1

l
cosλ2n−1x1 dx1 = −l

4ν4m
(1 + ν2m) [(2νm)2 − (λ2n−1l)2]

. (64)

Thus, from (58)–(64) we obtain

2T1 = −νm

l∫
0

cos
2νmx1

l
cosλ2n−1x1 dx1 = −l

4ν2m
(2νm)2 − (λ2n−1l)2

̸= 0.

T3 =

l∫
0

X̃3,2n−1(x3)X̃3,2m(x3) dx3

=

l∫
0

sin2
λ2n−1x3

2

[
1

νm
sin

2νmx3
l

− 2

l
x3 + 2 sin2

νmx3
l

]
dx3 =

3∑
s=1

Js.

J1 =
1

νm

l∫
0

sin2
λ2n−1x3

2
sin

2νmx3
l

dx3 = − l

2(1 + ν2m)

[
1 +

2νm
(2νm)2 − (λ2n−1l)2

]
.

J2 = −2

l

l∫
0

x3 sin
2 λ2n−1x3

2
dx3 = − l

2
. (65)

J3 = 2

l∫
0

sin2
λ2n−1x3

2
sin2

νmx3
l

dx3 =
l

2
− l

2(1 + ν2m)

[
1− 2νm

(2νm)2 − (λ2n−1l)2

]
. (66)

Thus, from (65)–(66) we obtain

T3 =

3∑
s=1

Js = − l

1 + ν2m
̸= 0.

It remains to consider the factor T2. We have

T2 =

l∫
0

X̃ ′
2,2n−1(x2)X̃2,2m(x2) dx2 = −

l∫
0

X̃2,2n−1X̃
′
2,2m(x2) dx2. (67)
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From (67) the following relations follow:

T2 = −T1 ̸= 0.

Similarly, as in the case of the pair of systems (27) and (31), it can be shown that pairwise
systems of vector functions (27) and (32), (28) and (30), (28) and (32), (29) and (30), (29)
and (32) do not possess the orthogonality property. This completes the proof of point 40 of
Theorem 11.

Theorem 11 is completely proved.

Theorem 11 is a significant refinement of the statement made in Theorem 10.
Thus, Theorem 10 and Theorem 11 give us a solution to Problem A for a cubic domain

of independent variables.

Conclusion

Fundamental systems in the space of solenoidal vector fields for a cube are constructed, which
can easily be reformulated for an arbitrary rectangular parallelepiped.

These fundamental systems of functions can be used to approximate the solution of both
direct and inverse boundary value problems for stationary and evolutionary systems of the
Stokes and Navier-Stokes equations in a cubic domain, as well as in cylinders with cross-
sections shaped like a cube.
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Gauthier-Villars, 1937.

[11] Gould S. H. Variational Methods for Eigenvalue Problems. An Introduction to the
Weinstein Method of Intermediate Problems. 2nd edition, Oxford University Press, 1966.

[12] Henrot A. Extremum problems for eigenvalues of elliptic operators, Birkhauser Verlag,
2006.

Жиеналиев М.Т., Ерғалиев М.Г. ҮШ ӨЛШЕМДI КУБТАҒЫ СОЛЕНОИДАЛДЫҚ
ФУНКЦИЯЛАР ЖҮЙЕСIНIҢ ОРТОГОНАЛДЫҒЫ ТУРАЛЫ

Бұрын бiз үш өлшемдi текшеде төртiншi реттi дифференциалдық оператор үшiн
спектрлiк есептiң шешiмi ретiнде iргелi функциялар жүйесiн (IФЖ) құрған едiк. Үш
өлшемдi ротор операторын IФЖ-ге қолдану арқылы бiз сұйықтықтың сығымдалмайтын
қозғалысын сипаттайтын Навье–Стокс теңдеулерiнiң теориясында маңызды болып табы-
латын соленоидалдық функциялар жүйесiн (СФЖ) алдық. Алайда, бұл жолмен алынған
СФЖ ортогональдылық қасиетiне ие емес, бұл оны теориялық және сандық әдiстерде
пайдалануды шектейдi. Бұл жұмыста IФЖ негiзiнде құрылған және дерлiк ортогонал-
дылық қасиетi бар жаңа СФЖ құрылымы ұсынылады. Мұндай жүйе спектралдық және
вариациялық әдiстерде тиiмдi қолдануға мүмкiндiк бередi, өйткенi дерлiк ортогоналды-
лық шешiмдердiң жинақтылығы мен орнықтылығын арттырады. Ұсынылған әдiс жоға-
ры реттi дифференциалдық операторлармен байланысты басқа шеттiк есептерге жалпы-
лауға болады және гидродинамика есептерiнде тиiмдi сандық алгоритмдердi әзiрлеуге
ықпал етуi мүмкiн.

Түйiн сөздер: спектралдық есеп, төртiншi реттi дифференциалдық оператор, со-
леноидалдық функциялар жүйесi, ортогоналдық қасиет.
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Дженалиев М. Т., Ергалиев М. Г. ОБ ОРТОГОНАЛЬНОСТИ СИСТЕМЫ СОЛЕ-
НОИДАЛЬНЫХ ФУНКЦИЙ В ТРЕХМЕРНОМ КУБЕ

Ранее мы построили систему фундаментальных функций (СФФ) как решение спек-
тральной задачи для дифференциального оператора четвёртого порядка в трёхмерном
кубе. Применяя к СФФ трёхмерный оператор ротор, мы получили систему соленоидаль-
ных функций (ССФ), которая имеет важное значение в теории уравнений Навье–Стокса
и моделировании движения несжимаемой жидкости. Однако построенная таким обра-
зом ССФ не обладает свойством ортогональности, что ограничивает её применение в
теоретическом анализе и численных методах. В данной работе предложено новое по-
строение ССФ на основе СФФ, обладающее свойством почти ортогональности. Это поз-
воляет использовать такую систему в спектральных и вариационных методах, где почти
ортогональность способствует улучшению сходимости и стабильности решений. Пред-
ставленный подход может быть обобщён на другие краевые задачи с участием диффе-
ренциальных операторов высокого порядка и может быть полезен при разработке более
эффективных численных алгоритмов в задачах гидродинамики.

Ключевые слова: спектральная задача, дифференциальный оператор четвертого
порядка, система соленоидальных функций, свойство ортогональности.
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