Numerical implementation of solving a boundary value problem with parameter for Fredholm integro-differential equation

Authors

DOI:

https://doi.org/10.70474/rxzvna18

Keywords:

integro-differential equation, boundary value problem, parametrization method, parameter, solvability

Abstract

The boundary value problem with parameter for Fredholm integro-differential equation with degenerate kernel is investigated in this paper. The aim of the paper is to establish the solvability conditions, to construct analytical and numerical solutions of the considered problem. The basis for achieving the goal is the ideas of Dzhumabayev parameterization method, classical numerical methods of solving Cauchy problems and numerical integration techniques.  A problem with parameters is obtained by introducing an additional parameter and a new unknown function. A system of equations with respect to parameters is compiled according to the initial data of the considered  equation and boundary conditions. The unknown function is found as a solution of the Cauchy problem for the ordinary differential equation. The equivalence of the original problem and the problem with parameters, the conditions of unique solvability are established and the formula for finding an analytical solution is obtained. Test examples of finding analytical and approximate solutions of the original problem are given.

Downloads

Download data is not yet available.

References

[1] Bykov Ya.V. On some problems in the theory of integro-differential equations, Kirgiz. Gos. Univ., Frunze, 1957 (in Russian).

[2] Boichuk A.A., Samoilenko A.M., Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht, Boston, 2004. DOI: https://doi.org/10.1515/9783110944679

[3] Krivoshein L.E. Approximate methods for solving linear ordinary integro-differential equations Akad. Nauk Kirg. SSR, Frunze, 1962 (in Russian).

[4] Lakshmikantham V., Rao M.R.M. Theory of Integro-Differential Equations, Gordon Breach, London, 1995.

[5] Darania P., Ebadian A. A method for the numerical solution of the integro-differential equations , Appl. Math. Comput. 188 (2007) 657–668. https://doi.org/10.1016/j.amc.2006.10.046 DOI: https://doi.org/10.1016/j.amc.2006.10.046

[6] Du H., Zhao G., Zhao Ch. Reproducing kernel method for solving Fredholm integro-differential equations with weakly singularity, J. Comput. Appl. Math. 255 (2014) 122–132. https://doi.org/10.1016/j.cam.2013.04.006 DOI: https://doi.org/10.1016/j.cam.2013.04.006

[7] Hosseini S.M., Shahmorad S. Numerical solution of a class of integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput. 136 (2003) 559–570. https://doi.org/10.1016/S0096-3003(02)00081-4 DOI: https://doi.org/10.1016/S0096-3003(02)00081-4

[8] Maleknejad K., Attary M. An efficient numerical approximation for the linear Fredholm integro-differential equations based on Cattani’s method, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 2672–2679. https://doi.org/10.1016/j.cnsns.2010.09.037 DOI: https://doi.org/10.1016/j.cnsns.2010.09.037

[9] Parts I., Pedas A., Tamme E. Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels, SIAM J. Numer. Anal. 43 (2005) 1897–1911.https://doi.org/10.1137/040612452 DOI: https://doi.org/10.1137/040612452

[10] Pedas A., Tamme E. A discrete collocation method for Fredholm integro-differential equation with weakly singular kernels, Appl. Numer. Math. 61 (2011) 738–751. https://doi.org/10.1016/j.apnum.2011.01.006 DOI: https://doi.org/10.1016/j.apnum.2011.01.006

[11] Pruss J. Evolutionary Integral Equations and Applications, Birkhauser Verlag, Basel etc., 1993. DOI: https://doi.org/10.1007/978-3-0348-0499-8_11

[12] Yuzbasi S. , Sahin N., Sezer M. Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases, Comput. Math. Appl. 61 (2011) 3079–3096. https://doi.org/10.1016/j.camwa.2011.03.097 DOI: https://doi.org/10.1016/j.camwa.2011.03.097

[13] Dzhumabaev D.S. A method for solving the linear boundary value problem for an integro-differential equation, Comput. Math. Math. Phys. 50 (2010) 1150–1161. https://doi.org/10.1134/S0965542510070043 DOI: https://doi.org/10.1134/S0965542510070043

[14] Dzhumabaev D.S. An algorithm for solving a linear two-point boundary value problem for an integro-differential equation, Comput. Math. Math. Phys. 53 (2013) 736–758. https://doi.org/10.1134/S0965542513060067 DOI: https://doi.org/10.1134/S0965542513060067

[15] Dzhumabaev D.S., Bakirova E.A. On the Unique Solvability of the Boundary-Value Problems for Fredholm Integrodifferential Equations with Degenerate Kernel, J. Math. Sci. 220(2017) 440–460. https://doi.org/10.1007/s10958-016-3194-2 DOI: https://doi.org/10.1007/s10958-016-3194-2

[16] Bakirova E.A., Iskakova N. B., Assanova A. T. Numerical method for the solution of linear boundary-value problems for integrodifferential equations based on spline approximations, Ukrainian Mathematical Journal 71(9) (2020) 1341-1358. https://doi.org/10.1007/s11253-020-01719-8 DOI: https://doi.org/10.1007/s11253-020-01719-8

[17] Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. Numerical solution to a control problem for integro-differential equations, Computational Mathematics and Mathematical Physics 60(2) (2020) 203-221. https://doi.org/10.1134/S0965542520020049 DOI: https://doi.org/10.1134/S0965542520020049

[18] Assanova A.T., Bakirova E.A., Uteshova R.E. Novel approach for solving multipoint boundary value problem for integro-differential equation Kazakh Mathematical journal 20(1) (2020) 103 -124.

[19] Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M., Uteshova, R.E. A computational method for solving a problem with parameter for linear systems of integro-differential equations, Computational and Applied Mathematics 39(248) (2020) https://doi.org/10.1007/s40314-020-01298-1 DOI: https://doi.org/10.1007/s40314-020-01298-1

[20] Assanova A.T., Bakirova E.A., Vassilina G.K. Well-posedness of problem with parameter for an integro-differential equations, Analysis 4(40) (2020) 175-191. https://doi.org/10.1515/anly-2019-0021 DOI: https://doi.org/10.1515/anly-2019-0021

[21] Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. A problem with parameter for the integro-differential equations, Mathematical Modeling and Analysis 26(1) (2021) 34-54. https://doi.org/10.3846/mma. 2021.11977 DOI: https://doi.org/10.3846/mma.2021.11977

[22] Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. Two-Point Boundary Value Problem for Volterra-Fredholm Integro-Differential Equations and Its Numerical Analysis, Lobachevskii Journal of Mathematics 44(3) (2023) 1100-1110. https://doi.org/10.1134/S1995080223030058 DOI: https://doi.org/10.1134/S1995080223030058

[23] Bakirova E.A., Iskakova N.B., Kadirbayeva Zh.M. Numerical implementation for solving the boundary value problem for impulsive integro-differential equations with parameter, Journal of Mathematics, Mechanics and Computer Science, al-Farabi KazNU 119 (3) (2023) 19-29. https://doi.org/10.26577/JMMCS2023v119i3a2 DOI: https://doi.org/10.26577/JMMCS2023v119i3a2

[24] Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fredholm integro-differential equations, Journal of Computational and Applied Mathematics 294 (2016) 342–357. https://doi.org/10.1016/j.cam.2015.08.023 DOI: https://doi.org/10.1016/j.cam.2015.08.023

[25] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation, USSR Comput. Math. Math. Phys. 29 (1989) 34–46. DOI: https://doi.org/10.1016/0041-5553(89)90038-4

Kazakh Mathematical Journal, 2022, Vol. 22, Iss. 2

Published

2024-09-30

How to Cite

Numerical implementation of solving a boundary value problem with parameter for Fredholm integro-differential equation. (2024). Kazakh Mathematical Journal, 22(2), 6–15. https://doi.org/10.70474/rxzvna18