Evaluation of solutions of one class of finite-dimensional nonlinear equations. II

Authors

DOI:

https://doi.org/10.70474/825ssk81

Keywords:

Differential operator, nonlinear equation, existence of a solution, uniqueness of a solution, a priori estimation of a solution

Abstract

In this article, we obtain two theorems on a priori estimates for solutions of nonlinear equations in a finite-dimensional space. These theorems are proved under certain conditions, which are borrowed from the conditions which are satisfied by finite-dimensional approximations of one class of nonlinear initial-boundary value problems. This article is a continuation of the first part with the same title. In this paper, we prove the second theorem.

Downloads

Download data is not yet available.

References

Fefferman C. , Existence and smoothness of the Navier–Stokes equation, Clay Mathematics Institute, Cambridge, MA, 2000, 1–5, http://claymath.org/millennium/Navier-Stokes_Equations/

Otelbaev M. , Existence of a strong solution to the Navier-Stokes equation, Mathematical Journal (Almaty), 2013, 13, 4, 5–104, http://www.math.kz/images/journal/2013-4/Otelbaev_ N-S_ 21_ 12_ 2013.pdf

Ladyzhenskaya O. A. , Solution "in general" of the Navier-Stokes boundary value problem in the case of two spatial variables, Dokl. Akad. Nauk SSSR, 1958, 123, 3, 427–429

Ladyzhenskaya O. A. , The sixth problem of the millennium: Navier-Stokes equations, existence and smoothness, Uspekhi Mat. Nauk, 2003, 58, 2, 45–78 DOI: https://doi.org/10.4213/rm610

Hopf E. , Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 1951, 4, 213–231 DOI: https://doi.org/10.1002/mana.3210040121

Otelbaev M. , Examples of not strongly solvable in the large equations of the Navier–Stokes type, Math. Notes, 2011, 89, 5, 771–779

Otelbaev M. Durmagambetov A. A. Seitkulov E. N. , Conditions for the existence of a strong solution in the large of one class of nonlinear evolution equations in Hilbert space. II, Siberian Math. J., 2008, 49, 4, 855–864

Otelbaev M. , Conditions for the existence of a strong solution in the large of one class of nonlinear evolution equations in Hilbert space, Proc. Steklov Inst. Math., 2008, 260, 1, 202–212 DOI: https://doi.org/10.1134/S0081543808010148

Otelbaev M. Zhapsarbaeva L. K. , Continuous dependence of the solution of a parabolic equation in a Hilbert space on parameters and on initial data, Differ. Equ., 2009, 45, 6, 818–849

Lions J.-L. , Some methods for solving nonlinear boundary value problems, Mir, Moscow, 1972, 586 pp.

Saks R. S. , Cauchy problem for the Navier-Stokes equations, Fourier method, Ufa Math. J., 2011, 3, 1, 53–79

Pokhozhaev S. I. , Smooth solutions of the Navier-Stokes equations, Mat. Sb., 2014, 205, 2, 131–144 DOI: https://doi.org/10.4213/sm8226

Koshanov B. D. Otelbaev M. O. , Correct Contractions stationary Navier-Stokes equations and boundary conditions for the setting pressure, AIP Conf. Proc., 2016, 1759, http://dx.doi.org/10.1063/1.4959619 DOI: https://doi.org/10.1063/1.4959619

Koshanov B. D. Otelbaev M. Shynybekov A. N. , Evaluation of solutions of one class of finite-dimensional nonlinear equations, Kazakh Mathematical Journal, 2025, 23, 1, 6–14, https://doi.org/10.70474/72n9nt14

Kazakh Mathematical Journal, 23(2), 2023

Published

2025-05-05

How to Cite

Evaluation of solutions of one class of finite-dimensional nonlinear equations. II. (2025). Kazakh Mathematical Journal, 23(2), 6–22. https://doi.org/10.70474/825ssk81

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.