Globally unsolvability of the pseudo-parabolic inequalities in annulus
DOI:
https://doi.org/10.70474/z2h3fm53Ключевые слова:
дифференциальный оператор, уравнение Лапласа, граничное условие, единственность решения, собственные значения оператора, полные ортогональные системы, спектр оператораАннотация
In the present paper, we consider the pseudo-parabolic inequality with a singular potential function in an annular domain. The problem is studied with the Neumann-type and Dirichlet-type boundary conditions on the upper boundary of annulus. The non-existence of global weak solutions were established for both cases based on the test function method.
Скачивания
Библиографические ссылки
C. Bandle Blow up in exterior domains, Recent Advances in Nonlinear Elliptic and Parabolic Problems, P. Benilan, M. Chipot, L. Evans, and M. Pierre, Pitman Notes, 208, 15-27, 1988.
C. Bandle H. A. Levine On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains, Trans. Amer. Math. Soc., 655, 595-624, 1989. DOI: https://doi.org/10.1090/S0002-9947-1989-0937878-9
P. Baras M. Pierre Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2, 185-212, 1985. DOI: https://doi.org/10.1016/s0294-1449(16)30402-4
M. Borikhanov B. T. Torebek Behavior of solutions to semilinear evolution inequalities in an annulus: The critical cases, Journal of Mathematical Analysis and Applications, 536, 1, 128172, 2024, https://doi.org/10.1016/j.jmaa.2024.128172. DOI: https://doi.org/10.1016/j.jmaa.2024.128172
M. Borikhanov B. T. Torebek Local and blowing-up solutions for an integro-differential diffusion equation and system, Chaos, Solitons and Fractals, 148, 111041, 2021. DOI: https://doi.org/10.1016/j.chaos.2021.111041
T. Cazenave F. Dickstein F. D. Weissler An equation whose Fujita critical exponent is not given by scaling, Nonlinear Analysis, 68, 862-874, 2008. DOI: https://doi.org/10.1016/j.na.2006.11.042
K. Deng H. A. Levine The Role of Critical Exponents in Blow-Up Theorems: The Sequel, Journal of Mathematical Analysis and Applications, 243, 85-126, 2000. DOI: https://doi.org/10.1006/jmaa.1999.6663
H. Fujita On the blowing up of solutions of the Cauchy problem for (u_t=triangle u+u^{1+alpha}), J. Fac. Sci. Univ. Tokyo Sect., 13, 109-124, 1966.
M. Jleli B. Samet Nonexistence criteria for systems of parabolic inequalities in an annulus, Journal of Mathematical Analysis and Applications, 514, 2, 126352, 2022. DOI: https://doi.org/10.1016/j.jmaa.2022.126352
K. Hayakawa On Nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad., 49, 7, 503-595, 1973. DOI: https://doi.org/10.3792/pja/1195519254
M. Kirane Y. Laskri N. Tatar Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl., 312, 488-501, 2005. DOI: https://doi.org/10.1016/j.jmaa.2005.03.054
K. Kobayashi T. Sirao H. Tanaka On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, 29, 3, 407-424, 1977. DOI: https://doi.org/10.2969/jmsj/02930407
H. A. Levine The role of critical exponents in blowup theorems, SIAM Rev., 32, 9, 262-288, 1990. DOI: https://doi.org/10.1137/1032046
E. Mitidieri S. I. Pohozaev A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math., 234, 1-383, 2001.
Y. W. Qi The critical exponents of parabolic equations and blow-up in (mathbb{R}^N), Proc. Roy. Soc. Edinburgh Sect. A, 128, 1, 123-136, 1998. DOI: https://doi.org/10.1017/S0308210500027190
P. Quittner P. Souplet Superlinear Parabolic Problems, Blow-Up, Global Existence and Steady States, Second ed., Birkhäuser, 2019.
F. B. Weissler Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., 38, 29-40, 1981. DOI: https://doi.org/10.1007/BF02761845

Дополнительные файлы
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Kazakh Mathematical Journal

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.
Условия лицензии «CC Attribution-NonCommercial-NoDerivatives 4.0» можно найти здесь.