Solution of the boundary value problem for differential equation with piecewise-constant argument of generalized type
DOI:
https://doi.org/10.70474/f9nnhc67Keywords:
Differential equations with piecewise-constant argument of generalized type, two-point boundary value problem, parametrization method, differential-algebraic equations, solvability criteriaAbstract
We examine a boundary value problem for a differential equation with piecewise-constant argument of generalized type. An interval [0,T] is divided into N parts, the values of a solution at the interior points of the subintervals are treated as additional parameters, and boundary value problem for differential equation with piecewise-constant argument of generalized type is transformed to an equivalent initial value problems with parameters for differential-algebraic equations on subintervals. Differential part of this problem contains of the Cauchy problems for ordinary differential equations on the subintervals. Algebraic part of this problem contains of the algebraic equations with respect to parameters composed by boundary and continuity conditions at interior points of the partition. The coefficients and right-hand sides of this system are determined by solving the Cauchy problems for ordinary differential equations on the subintervals. We demonstrate that the solvability of boundary value problems is equivalent to the solvability of the composed systems. We propose methods for solving boundary value problems based on the construction and solution of these systems.
Downloads
References
[1] Akhmet M.U. On the reduction principle for differential equations with piecewise-constant argument of generalized type, J. Math. Anal. Appl., 336:1 (2007), 646-663. DOI: 10.1016/j.jmaa.2007.03.010. DOI: https://doi.org/10.1016/j.jmaa.2007.03.010
[2] Akhmet M.U. Integral manifolds of differential equations with piecewise-constant argument of generalized type, Nonlinear Analysis-Theory Methods & Applications, 66:2 (2007), 367-383. DOI: 10.1016/j.na.2005.11.032. DOI: https://doi.org/10.1016/j.na.2005.11.032
[3] Akhmet M.U. Almost periodic solution of differential equations with piecewise-constant argument of generalized type, Nonlinear Analysis-Hybrid Systems, 2:2 (2008), 456-467. DOI: 10.1016/j.nahs.2006.09.002. DOI: https://doi.org/10.1016/j.nahs.2006.09.002
[4] Zhang F.Q. BVPs for second order differential equations with piecewise constant arguments, Annals of Differential Equations, 9 (1993), 369-374.
[5] Nieto J.J., Rodriguez-Lopez R. Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary value conditions, Computers & Mathematics with Applications, 40:4 (2000), 433-442. DOI: 10.1016/S0898-1221(00)00171-1. DOI: https://doi.org/10.1016/S0898-1221(00)00171-1
[6] Seifert G. Second order scalar functional differential equations with piecewise constant arguments, Journal of Difference Equations and Applications , 8:5 (2002), 427-445. DOI: 10.1080/10236190290017469. DOI: https://doi.org/10.1080/10236190290017469
[7] Seifert G. Second-order neutral delay-differential equations with piecewise constant time dependence, J. Math. Anal. Appl., 281:1 (2003), 1-9. DOI: 10.1016/S0022-247X(02)00303-7. DOI: https://doi.org/10.1016/S0022-247X(02)00303-7
[8] Nieto J.J., Rodriguez-Lopez R. Remarks on periodic boundary value problems for functional differential equations, J. Comp. Appl. Math., 158:2 (2003), 339-353. DOI: 10.1016/S0377-0427(03)00452-7. DOI: https://doi.org/10.1016/S0377-0427(03)00452-7
[9] Yuan R. On the spectrum of almost periodic solution of second-order differential equations with piecewise constant argument, Nonlinear Analysis-Theory Methods & Applications, 59:8 (2004), 1189-1205. DOI: 10.1016/j.na.2004.07.031. DOI: https://doi.org/10.1016/j.na.2004.07.031
[10] Cabada A., Ferreiro J.B., Nieto J.J. Green’s function and comparison principles for first order periodic differential equations with piecewise constant arguments, J. Math. Anal. Appl., 291:2 (2004), 690-697. DOI: 10.1016/j.jmaa.2003.11.022. DOI: https://doi.org/10.1016/j.jmaa.2003.11.022
[11] Nieto J.J., Rodriguez-Lopez R. Green’s function for second order periodic boundary value problems with piecewise constant argument, J. Math. Anal. Appl., 304:1 (2005), 33-57. DOI: 10.1016/j.jmaa.2004.09.023. DOI: https://doi.org/10.1016/j.jmaa.2004.09.023
[12] Yang P., Liu Y., Ge W. Green’s function for second order differential equations with piecewise constant argument, Nonlinear Analysis, 64:8 (2006), 1812-1830. DOI: 10.1016/j.na.2005.07.019. DOI: https://doi.org/10.1016/j.na.2005.07.019
[13] Nieto J.J., Rodriguez-Lopez R. Monotone method for first-order functional differential equations, Computers & Mathematics with Applications, 52:3-4 (2006), 471-484. DOI: 10.1016/j.camwa.2006.01.012. DOI: https://doi.org/10.1016/j.camwa.2006.01.012
[14] Nieto J.J., Rodriguez-Lopez R. Some considerations on functional differential equations of advanced type, Mathematische Nachrichten, 283:10 (2010), 1439-1455. DOI: 10.1002/mana.200710093. DOI: https://doi.org/10.1002/mana.200710093
[15] Dominguez-Perez M.A., Rodriguez-Lopez R. Multipoint boundary value problems of Neumann type for functional differential equations, Nonlinear Analysis: Real World Applications, 13:4 (2012), 1662-1675. DOI: 10.1016/j.nonrwa.2011.11.023. DOI: https://doi.org/10.1016/j.nonrwa.2011.11.023
[16] Dzhumabayev D.S. Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation, U.S.S.R. Comput. Maths. Math. Phys., 29:1 (1989), 34-46. DOI: 10.1016/0041-5553(89)90038-4. DOI: https://doi.org/10.1016/0041-5553(89)90038-4
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Kazakh Mathematical Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
One can find the license terms "CC Attribution-NonCommercial-NoDerivatives 4.0" here.