Well-posedness of the Tricomi Problem for the Multidimensional Lavrent'ev-Bitsadze Equation

Authors

DOI:

https://doi.org/10.70474/05m52x96

Keywords:

Tricomi problem, mixed domain, classical solution, multidimensional Lavrent'ev-Bitsadze equation, spherical functions

Abstract

Numerous applications in physics and engineering involve models with partial differential equations of mixed type. The theory of boundary-value problems for such equations in two dimensions has been well studied. However, the key problem of well-posedness of mixed problems for such equations in multidimensional bounded domains remains currently unsolved. This paper establishes a mixed domain in which the solution of the Tricomi problem for the multidimensional Lavrent'ev-Bitsadze equation has a unique classical solution.

Downloads

Download data is not yet available.

References

[1] Otway, T. H., 2010, Unique solutions to boundary value problems in the cold plasma model, SIAM Journal on Mathematical Analysis, vol. 42(6), pp. 3045-3053. DOI: https://doi.org/10.1137/090775786

[2] Bitsadze, A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh (Some Classes of Partial Differential Equations), Moscow: Nauka, 1981.

[3] Nakhushev, A.M., Zadachi so smeshcheniem dlya uravneniya v chastnykh proizvodnykh (Problems with Shift for Partial Differential Equations), Moscow: Nauka, 2006.

[4] Bitsadze, A.V., Uravneniya smeshannogo tipa (Mixed Type Equations), Moscow: Izd. Akad. Nauk SSSR, 1959.

[5] Bitsadze, A.V., On the problem of equations of mixed type in multidimensional domains, Dokl. Akad. Nauk SSSR, 1956, vol. 110, no. 6, pp. 901–902.

[6] Pul’kin, S.V., Singular Tricomi problem, in Tr. Tret’ego Vsesoyuz. Mat. S’ezda. T. 1 (Proc. Third All-Union. Math. Congr. Vol. 1), Moscow, 1956, pp. 65–66.

[7] Aldashev, S.A., Nonuniqueness of the solution of the spatial Gellerstedt problem for the multidimensional Lavrent’ev–Bitsadze equation, in Mater. mezhdunar. konf. “Differentsial’nye uravneniya. Funktsional’nye prostranstva. Teorii priblizhenii”, posvyashch. 100-letiyu akad. S.L. Soboleva (Proc. Int. Conf. “Differential Equations. Functional spaces. Approximation Theory.” Dedicated to the 100th Anniversary of Acad. S.L. Sobolev), Novosibirsk, 2008, p. 93.

[8] Aldashev, S.A., Nonuniqueness of the solution of the spatial Gellerstedt problem for a class of multidimensional hyperbolic-elliptic equations, Ukr. Mat. Zh., 2010, vol. 62, no. 2, pp. 265–269. DOI: https://doi.org/10.1007/s11253-010-0352-4

[9] Moiseev, E.I., Nefedov, P.Kh., and Kholomeeva, A.A., Analogs of the Tricomi and Frankl problems for the Lavrent’ev–Bitsadze equation in three-dimensional domains, Differ. Equations, 2014, vol. 50, no. 12, pp. 1677–1680. DOI: https://doi.org/10.1134/S001226611412012X

[10] Mikhlin, S.G., Mnogomernye singulyarnye integraly i integral’nye uravneniya (Multidimensional Singular Integrals and Integral Equations), Moscow: Gos. Izd. Fiz.-Mat. Lit., 1962.

[11] Kamke, E.W.H., Differentialgleichungen, Leipzig: Teubner, 1959. Translated under the title: Spravochnik po obyknovennym differentsial’nym uravneniyam, Moscow: Nauka, 1965.

[12] Kolmogorov, A.N., Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (The Elements of the Theory of Functions and of the Functional Analysis), Moscow: Nauka, 1976.

[13] Smirnov, V.I., Kurs vysshei matematiki (A Course of Higher Mathematics), vol.4, part 2, Moscow: Nauka, 1981.

[14] Bateman, G., Erdelyi, A. Higher Transcendental Functions (Russian translation), vol. 1, Moscow: Nauka, 1973.

[15] Sobolev, S.L., Nekotorye primenenija funktsional?nogo analiza v matematicheskoj fizike (Some Applications of the Functional Analysis in Mathematical Physics), Novosibirsk, Izd. SO AN SSSR, 1962.

[16] Aldashev, S.A., Some local and nonlocal boundary value problems for the wave equation, Differ. Equations, 1983, vol. 19, no. 1, pp. 3–8.

[17] Aldashev, S.A., Kraevye zadachi dlja mnogomernyh giperbolicheskih i smeshannyh uravnenij (Boundary-Value Problems for Multidimensional Hyperbolic and Mixed Equations), Almaty: Gylym, 1994.

[18] Aldashev, S.A., On some boundary value problems for a multidimensional wave equation, Dokl. Akad. Nauk SSSR, 1982, vol. 265, no. 6, pp. 1289–1292.

Kazakh Mathematical Journal, 22(1), 2022

Published

2024-09-12

How to Cite

Well-posedness of the Tricomi Problem for the Multidimensional Lavrent’ev-Bitsadze Equation. (2024). Kazakh Mathematical Journal, 22(1), 6–14. https://doi.org/10.70474/05m52x96

Similar Articles

1-10 of 15

You may also start an advanced similarity search for this article.