Solution of the heat equation with a discontinuous coefficient with nonlocal boundary conditions by the Fourier method

Authors

DOI:

https://doi.org/10.70474/4sw3g811

Keywords:

Heat equation with discontinuous coefficients, spectral problem, non-self-adjoint problem, Riesz basis, classical solution, Fourier method

Abstract

This paper substantiates the solution by the method of separation of variables of the initial-boundary value problem for the heat equation with a discontinuous coefficient, under periodic or anti-periodic boundary conditions. Using the Fourier method, this problem is reduced to the corresponding spectral problem. The eigenvalues and eigenfunctions of this spectral problem are found. It is shown that the spectral problem is non-self-adjoint and a conjugate spectral problem of this original spectral problem is constructed. Further, it is proved that the system of eigenfunctions forms a Riesz basis. For this purpose, a self-adjoint spectral problem is constructed and its eigenvalues and eigenfunctions are found. In conclusion, using biorthogonality, the main theorem on the existence and uniqueness of a classical solution to the problem is proven. 

Downloads

Download data is not yet available.

References

Samarskiy A.A. Parabolicheskiye uravneniya s razryvnymi koeffitsiyentami. [Parabolic equations with discontinuous coefficients]. Dokl. AN SSSR. — Reports USSR AS, 121:2 (1958), 225–228. [in Russian].

Kim Ye.I., Baymukhanov B.B. O raspredelenii temperatury v kusochno-odnorodnoy polubeskonechnoy plastinke. [On the temperature distribution in a piecewise homogeneous semi-infinite plate]. Dokl. AN SSSR. — Reports USSR AS, 140:2 (1961), 333–336. [in Russian].

Oleynik O.A. Krayevyye zadachi dlya lineynykh uravneniy ellipticheskogo I parabolicheskogo tipa s razryvnymi koeffitsiyentami. [Boundary value problems for linear equations of elliptic and parabolic type with discontinuous coefficients]. Izvestiia AN SSSR. Matematika. — Proceedings of the USSR AS. Mathematics, 25:1 (1961), 3–20. [in Russian].

Kamynin L.I. O reshenii krayevykh zadach dlya parabolicheskogo uravneniya s razryvnymi koeffitsiyentami. [On the solution of boundary value problems for a parabolic equation with discontinuous coefficients]. Dokl. AN SSSR. — Reports USSR AS, 139:5 (1961), 1048–1051. [in Russian].

Kamynin L.I. O metode potentsialov dlya parabolicheskogo uravneniya s razryvnymi koeffitsiyentami. [On the potential method for a parabolic equation with discontinuous coefficients]. Dokl. AN SSSR. — Reports USSR AS, 145:6 (1962), 1213–1216. [in Russian].

Kesel'man G.M. O bezuslovnoy skhodimosti razlozheniy po sobstvennym funktsiyam nekotorykh differentsial'nykh operatorov. [On the unconditional convergence of expansions in eigenfunctions some differential operators]. Izvestiya vuzov. Matematika. — News of universities. Mathematics, 2 (1964), 82–93. [in Russian].

Mikhaylov V.P. O bazisakh Rissa v L2(0,1) [About Riesz bases in L2(0,1)]. Dokl. AN SSSR. — Reports USSR AS, 144:5 (1962), 981–984. [in Russian].

Ionkin N.I., Moiseyev Ye.I. O zadache dlya uravneniya teploprovodnosti s dvutochechnymi krayevymi usloviyami. [On the problem for the heat equation with two-point boundary values conditions]. Differentsial'nyye uravneniya. — Differential equations, 15:7 (1979), 1284–1295. [in Russian].

Ionkin N.I. Resheniye odnoy zadachi teorii teploprovodnosti s neklassicheskim krayevym usloviyem. [Solution of a problem in the theory of heat conduction with a non-classical boundary condition]. Differentsial'nyye uravneniya. — Differential equations, 13:2 (1977), 294–304. [in Russian].

Orazov I., Sadybekov M.A. Ob odnom klasse zadach opredeleniya temperatury i plotnosti istochnikov tepla po nachal'noy i konechnoy temperaturam. [On one class of problems of determining the temperature and density of heat sources from the initial and final temperatures]. Sibirskiy matematicheskiy zhurnal. — Siberian Mathematical Journal, 53:1 (2012), 180–186. [in Russian]. DOI: https://doi.org/10.1134/S0037446612010120

Orazov I., Sadybekov M.A. Ob odnoy nelokal'noy zadache opredeleniya temperatury i plotnosti istochnikov tepla. [About one nonlocal problem of determining the temperature and density of heat sources.] Izvestiya vuzov. Matematika. — News of universities. Mathematics, 2 (2012), 70–75. [in Russian].

Sadybekov M.A. Initial-Boundary Value Problem for a Heat Equation with not Strongly Regular Boundary Conditions. Functional Analysis in Interdisciplinary Applications. — Springer Proceedings in Mathematics & Statistics, 216 (2017), 330–348. DOI: https://doi.org/10.1007/978-3-319-67053-9_32

Il'in V.A. O skhodimosti razlozheniy po sobstvennym funktsiyam v tochkakh razryva koeffitsiyentov differentsial'nogo operatora. [On the convergence of expansions in eigenfunctions at discontinuity points of the coefficients of a differential operator]. Matem. Zametki — Math Notes, 22:5 (1977), 679–698. [in Russian]. DOI: https://doi.org/10.1007/BF01098352

Budak A.B., Denisov V.N. O nekotorykh svoystvakh spektral'noy funktsii operatora Shturma-Liuvillya s razryvnymi koeffitsiyentami. [On some properties of the spectral function of the Sturm-Liouville operator with discontinuous coefficients]. Matem. Zametki — Math Notes, 49:6 (1991), 19–28. [in Russian]. DOI: https://doi.org/10.1007/BF01156578

Sadybekov M.A., Koilyshov U.K. Two-phase tasks thermal conductivity with boundary conditions of the Sturm type. Sixth International Conference on Analysis and Applied Mathematics. Abstract book of the conference ICAAM, 31.10.2022-06.11.2022, Antalya, Turkey, 2022.

Sadybekov M.A., Koilyshov U.K. Nachal'no-krayevyye zadachi dlya uravneniya teploprovodnosti s kusochno-postoyannym koeffitsiyentom. [Initial boundary value problems for the heat equation with piecewise constant coefficient]. Izvestiya Mezhdunarodnogo kazakhsko-turetskogo Universiteta im. KH.A.Yasavi. Seriya matematika, fizika, informatika. — News of the Akhmet Yassawi Kazakh-Turkish International University. Mathematics, physics, computer series. 1:16 (2021), 7–16. [in Russian].

Koilyshov U.K., Sadybekov M.A. Solution of initial-boundary value problems for the heat equation with discontinuous coefficients arising in financial mathematics. International Mathematical Conference “Functional Analysis in Interdisciplinary Applications”, Antalya, Turkiye, 02–07 October, 2023.

Naymark M.A. Lineynyye differentsial'nyye operatory. [Linear differential operators]. Moscow: Nauka, 1969. [in Russian].

Kazakh Mathematical Journal, 2024, Vol. 24, Iss. 4

Published

2025-01-12

How to Cite

Solution of the heat equation with a discontinuous coefficient with nonlocal boundary conditions by the Fourier method. (2025). Kazakh Mathematical Journal, 24(4), 63–76. https://doi.org/10.70474/4sw3g811

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.